
Geophys. J. Int. (2023) 234, 25–39 https://doi.org/10.1093/gji/ggad071
Advance Access publication 2023 February 14
GJI Seismology

Efficient wave type fingerprinting and filtering by six-component
polarization analysis

David Sollberger ,1 Nicholas Bradley,1,2 Pascal Edme1 and Johan O. A. Robertsson1

1Institute of Geophysics, ETH Zurich, 8092 Zurich, Switzerland. E-mail: david.sollberger@gmail.com
2Centre for Geophysical Forecasting, NTNU, 7034 Trondheim, Norway

Accepted 2023 February 7. Received 2023 February 7; in original form 2022 December 22

S U M M A R Y
We present a technique to automatically classify the wave type of seismic phases that are
recorded on a single six-component recording station (measuring both three components
of translational and rotational ground motion) at the Earth’s surface. We make use of the
fact that each wave type leaves a unique ’fingerprint’ in the six-component motion of the
sensor (i.e. the motion is unique for each wave type). This fingerprint can be extracted by
performing an eigenanalysis of the data covariance matrix, similar to conventional three-
component polarization analysis. To assign a wave type to the fingerprint extracted from the
data, we compare it to analytically derived six-component polarization models that are valid
for pure-state plane wave arrivals. For efficient classification, we make use of the supervised
machine learning method of support vector machines that is trained using data-independent,
analytically derived six-component polarization models. This enables the rapid classification of
seismic phases in a fully automated fashion, even for large data volumes, such as encountered in
land-seismic exploration or ambient noise seismology. Once the wave-type is known, additional
wave parameters (velocity, directionality and ellipticity) can be directly extracted from the six-
component polarization states without the need to resort to expensive optimization algorithms.
We illustrate the benefits of our approach on various real and synthetic data examples for
applications such as automated phase picking, aliased ground-roll suppression in land-seismic
exploration and the rapid close-to real-time extraction of surface wave dispersion curves
from single-station recordings of ambient noise. Additionally, we argue that an initial step
of wave type classification is necessary in order to successfully apply the common technique
of extracting phase velocities from combined measurements of rotational and translational
motion.

Key words: Time-series analysis; Body waves; Machine learning; Rotational seismology;
Surface waves and free oscillations; Theoretical seismology; Polarization analysis..

1 I N T RO D U C T I O N

Three-component polarization analysis and filtering is widely used
in seismology and seismic exploration to characterize seismic wave
motion in terms of its directionality and ellipticity and to enhance
the signal-to-noise ratio of specific seismic phases (e.g. Flinn 1965;
Vidale 1986; Montalbetti & Kanasewich 1970; Christoffersson et al.
1988; Greenhalgh et al. 2018). It has recently been shown that some
of the ambiguity that is inherent to three-component polarization
analysis can be overcome when data from rotational seismometers
are additionally included in the analysis, leading to so-called six-
component polarization analysis schemes. For example, rotational
data help to eliminate the 180◦ ambiguity that is inherent to three-
component direction finding problems and enable the unambiguous
estimation of the sense of rotation (ellipticity angle) of Rayleigh

waves in the single station case (Maranò & Fäh 2013; Sollberger
et al. 2018, 2020).

Another key advantage of incorporating rotational data into po-
larization analysis is that it enables the estimation of the seismic
wave type of a recorded polarized wave. While at a single point
of observation, pure translational motions are not indicative of the
wave type (e.g. the polarization of both P- and S-waves is rec-
tilinear in the three translational components), rotational motion
recordings are a direct measurement of the wavefield’s curl, and
are thus exclusive to S-waves and surface waves in isotropic me-
dia. Hence, rotational motion measurements can highly facilitate
the identification and isolation of different wave modes in seismic
data. The concept of computing the wavefield divergence and curl
from small-aperture arrays has been widely exploited to separate P-
from S-waves (Robertsson & Muyzert 1999; Robertsson & Curtis
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2002; Woelz et al. 2009; Sollberger et al. 2016; Van Renterghem
et al. 2018) and to locally identify and suppress surface waves in
land seismic exploration data (Edme & Muyzert 2013; Edme et al.
2013; Barak et al. 2014; Muyzert et al. 2019; Allouche et al. 2020).
The wave type selectivity provided by rotation data has also been
used to analyse Love waves in the secondary microseism (Hadzi-
ioannou et al. 2012; Tanimoto et al. 2015, 2016) since Love (or
SH-) waves are the only wave types that generate rotational motions
around the vertical axis. Yuan et al. (2020) developed a polarization
analysis scheme for back-azimuth estimation that only makes use
of the horizontal components of a rotational seismometer, which
are purely sensitive to SV- and Rayleigh waves, thereby enabling
a stable estimation of the back-azimuth that does not suffer from
the interference of other wave types (Yuan et al. 2021). Sollberger
et al. (2018, 2020) introduced a method to infer on the wave type of
recorded six-component ground-motion by fitting analytically de-
rived wave models to the data. The method has been recently used to
characterize the composition of the seismic wavefield at Stromboli
volcano (Wassermann et al. 2022). Since the method relies on an
expensive grid search for the wave parameters, it is not feasible to
apply it to large data volumes.

In the present paper, we introduce an efficient way to identify
the wave types of seismic phases that are recorded on a single
six-component recording station (measuring both translation and
rotation) at the earth’s surface. To do so, we extract time- and
frequency-dependent 6C polarization states of seismic wave arrivals
by performing an eigenanalysis of the complex covariance matrix
of the six component data. We then apply the machine learning
technique of support vector machines (SVMs) to rapidly classify
the wave type of an extracted polarization state represented by the
principal eigenvector of the covariance matrix. The machine learn-
ing model is trained using purely analytical polarization models that
are valid for isotropic media, resulting in a fully data-independent
training.

After the classification of the wave type of a recorded polarization
state, dedicated filters can be defined that separate the data into
different wave modes. This can highly facilitate the interpretation
of single-station seismograms and enable the automated picking of
seismic phases (P-, S- and surface waves). Additionally, once the
wave type is known, wave parameters like the local propagation
velocity and the propagation direction can be estimated directly
from the extracted polarization states without the need to employ
costly grid-search algorithms and without the ambiguity inherent to
three-component polarization analysis.

2 T H E O RY

We consider a simple seismic wave model m(x, t) : R4 → R
6 for

a pure-state seismic wave of amplitude A and angular frequency
ω travelling in the direction of the wave vector k = [kx , ky, kz]T .
The magnitude of the wave vector is the wavenumber. The wave is
described at position x = [x, y, z]T and at time t with the following
plane-harmonic solution of the wave equation:

m(x, t) = Re
(

Ah(θ , ω)e j(k·x−ωt)
)
. (1)

Here, m(x, t) = (u̇x , u̇ y, u̇z, rx , ry, rz)T (x, t), where the first three
components of the six-component vector field describe the trans-
lational motions (in ground velocity), and the last three describe

Figure 1. Right-handed coordinate frame considered in this paper. The
propagation direction of a wave propagating in the direction of the wave
vector k can be described with the inclination angle ψ and the azimuth φ.

the rotational motions (in radians)1. Re(.) denotes the real part, and
j is the imaginary unit with characteristic identity j = √−1. The
rotational motions are related to the curl of translational motions
as (rx , ry, rz)T = 1

2 ∇ × (ux , uy, uz)T (e.g. Cochard et al. 2006). In
eq. (1), the complex-valued vector quantity h(θ(ω)) ∈ C

6 describes
the relative amplitudes and phase-shifts of the six-component mo-
tion, and it is, in the following, referred to as the 6-C polarization
vector. It depends on a set of parameters θ (ω), such as the mode of
vibration (wave type), the propagation direction and the local wave
velocity, which can be frequency-dependent (e.g. for dispersive sur-
face waves).

At the free-surface and for isotropic elastic media, the 6-C polar-
ization vectors can be analytically derived for different wave types
(see Sollberger et al. 2018, for a full derivation). In the following,
we will consider a right-handed coordinate frame with a downward
pointing z-axis, as depicted in Fig. 1, consistent with the convention
used by most commercial seismometers. The pure-state 6-C polar-
ization vectors for a given frequency ω then take on the following
expressions for P-, SV-, SH-, Rayleigh and Love waves, respectively
(Sollberger et al. 2018):

hP (α, β, ψ, φ) =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− cos φ

(
sin ψ + AP P

AP
sin ψ + AP S

AP

√
1 − (

β

α
sin ψ

)2
)

− sin φ

(
sin ψ + AP P

AP
sin ψ + AP S

AP

√
1 − (

β

α
sin ψ

)2
)

cos ψ − AP P
AP

cos ψ + AP S
AP

(
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)
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0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
(2)

1In practice, the actual measurements in the field can also be in acceleration
(for the translational components) and rotation rate (for the rotational com-
ponents). The processing techniques described in this paper can be applied
to such data without loss of validity.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/234/1/25/7036774 by Belgian R

oyal O
bservatory user on 30 June 2023



6C fingerprinting 27

hSV (α, β, ψ, φ) =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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,
(3)

hSH (β,ψ, φ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 sin φ

−2 cos φ

0
0
0

−β−1 sin ψ

⎞
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, (4)

hR(cR, ξ, φ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

− j sin ξ cos φ

− j sin ξ sin φ

cos ξ

c−1
R cos ξ sin φ

−c−1
R cos ξ cos φ

0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (5)

hL (cL , φ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 sin φ

−2 cos φ

0
0
0

−c−1
L

⎞
⎟⎟⎟⎟⎟⎟⎠

. (6)

In eqs (2)–(6), ψ denotes the inclination angle of the incident
wave and φ the propagation azimuth (see Fig. 1). α and β are the
local P- and S-wave velocities at the recording station. cR and cL

are the Rayleigh wave and Love wave phase velocity, respectively. ξ
is the Rayleigh wave ellipticity angle, determining the eccentricity
and the sense of rotation of the Rayleigh wave particle motion.

For an incoming P-wave at a free surface, the polarization vector
is a superposition of the three polarization vectors of the upgoing,
incident P-wave with amplitude AP, the reflected down-going P-
wave with amplitude APP and the mode-converted downgoing SV-
wave with amplitude APS. Explicit expressions for the amplitudes of
the superimposed waves as a function of the incident angle and the
local P- and S-wave velocities can be found in Appendix A. Note
that the non-zero rotation components in the P-wave polarization
vector purely arise from the downgoing mode-converted SV-wave.

Similarly, the polarization vector for an SV-wave is a superpo-
sition of the three polarization vectors of the upgoing, incident
SV-wave with amplitude AS, the reflected downgoing SV-wave with
amplitude ASS and the mode-converted downgoing P-wave with am-
plitude ASP, where explicit expressions for the amplitudes can again
be found in Appendix A.

For overcritical SV-waves and Rayleigh waves, the imaginary
part of the 6-C polarization vectors is non-zero (Im(h) �= 0), which
means that the motion in the six components is out of phase, de-
scribing an ellipse in 6D space. For all other wave types, the 6C
polarization is rectilinear (the motion of all six components is in
phase).

Note that each polarization vector in eqs (2)–(6) provides a tem-
plate for a unique ’fingerprint’ for each wave type with the exception
of SH- and Love waves, which have the same fingerprint (a Love
wave is nothing else but a horizontally propagating SH-wave). In the

following, we attempt to extract this fingerprint from a 6-C record-
ing using polarization analysis and use it to automatically classify
the wave mode of a recorded seismic phase.

2.1 Measurement model

A local six-component measurement d(x0, t) of a seismic wavefield
at position x0 is a superposition of an arbitrary number n of pure-
state waves and is typically corrupted by additive noise n(t), so
that

d(x0, t) =
n∑

i=1

mi (x0, t, θ i ) + n(t), (7)

where the character of the noise can be different on each of the six
channels. Given some six-component data d(x0, t), we now want to
infer on the polarization states of the recorded waves.

Initially, the translational and rotational recordings have differ-
ent units: ground velocity in m s−1 and rotational displacement in
radians, respectively. For polarization analysis, it is convenient to
convert the translational recordings to a dimensionless ‘pseudo’
rotation by scaling them by a slowness p, so that the resulting am-
plitudes of all six data components are comparable. This leads to the
normalized data d̃(x0, t) = [pu̇x , pu̇y, pu̇z, rx , ry, rz]T (x0, t)2. The
scaling slowness p can hereby be chosen arbitrarily, but it should en-
sure that the translational and rotational recordings have comparable
amplitudes, warranting that the polarization analysis is numerically
stable. In the following applications, we automatically select a scal-
ing slowness based on the Euclidian norm of the translational and
the rotational recordings as

p =

∫
R

∥∥∥(
rx (t), ry(t), rz(t)

)T
∥∥∥

2
dt∫

R

∥∥∥(
u̇x (t), u̇ y(t), u̇z(t)

)T
∥∥∥

2
dt

. (8)

2.2 Polarization analysis in the time-frequency domain

Since all parameters of the 6-C polarization vectors listed in eqs (2)–
(6) can be frequency-dependent and the polarization states vary with
time (due to the arrival of different waves), it is advantageous to
estimate the 6-C polarization states from a time-frequency repre-
sentation of the recorded signal (Sollberger et al. 2020). Alter-
natively, the data can be bandpass filtered to a narrow frequency
band within which the polarization properties can be assumed to be
constant, and the polarization states can be extracted using a time-
domain approach based on the analytic signal (Sollberger et al.
2018). In this paper, we choose the S-transform (Stockwell et al.
1996) to localize the polarization states of the recorded data in
both time and frequency. The S-transform of the recorded data
D̃(τ, f ) = [D̃1, . . . , D̃6]T (τ, f ) is defined as:

D̃(τ, f ) = | f |
k
√

2π

∫ ∞

−∞
d̃(t) exp

(
− f 2(τ − t)2

2k2

)
e− j2π f t dt, (9)

where τ is the time variable (centre point of the sliding Gaussian
time window), f is frequency and k is a scaling factor that controls
the number of oscillations in the window. Increasing k will increase
the frequency-resolution of the S-transform at the expense of the
time-resolution (Schimmel & Gallart 2005).

2Again, if the actual field measurements are in acceleration and rotation rate,
the scaling slowness is simply applied to the acceleration components.
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We now form the complex covariance matrix C(τ, f ) ∈ C
6×6 at

each fixed point (τ , f) from the S-transformed data:

C(τ, f ) = K (
τ,
 f ) ∗ (
D̃(τ, f )D̃H (τ, f )

)
, (10)

where (.)H is the conjugate transpose operator and ∗ marks a 2D con-
volution with an averaging kernel K (
τ, 
 f ) ∈ R

2, with widths
in time and frequency of 
τ and 
f, respectively. Since seismic
waves are band-limited transients, the polarization properties of
pure-state modes should remain constant within a finite observation
time and over a finite frequency-band. The width of the averaging
kernel should be chosen accordingly. Typically, 
τ should be cho-
sen such that it is frequency-dependent and proportional to 1/f (one
dominant period) and 
f, such that it is narrow enough to ensure
that dispersion effects of the estimated polarization properties are
avoided. Choosing larger widths for the kernel helps to maximize
the signal-to-noise ratio when extracting the polarization states but
comes at the risk of potentially having multiple events with different
polarization states interfere within the analysis window. Note that
without the convolution with the kernel function, the covariance
matrix C(τ, f ) would be of rank 1 at each fixed point (τ , f). The
kernel K(
τ , 
f) can be a Gaussian or a simple box function that
computes a moving average of the covariance matrices over time
and frequency. In the applications shown in this paper, we will use
the latter.

In the following, we will drop the dependency of C on (τ , f) for
notational brevity. We can now expand the matrix C as

C =
6∑

i=1

λi vi v
H
i , (11)

where λi ∈ R (i=1,6) are the eigenvalues and vi ∈ C
6 are the eigen-

vectors of C. By definition, C is Hermitian, meaning that it will have
real eigenvalues and the eigenvectors form an orthonormal basis,
that is, vH

j vk = δ jk .
Each eigenvector vi can be multiplied by a phase factor ejζ ,

and the resulting vector will still be an eigenvector of C. Follow-
ing Samson & Olson (1980), we choose this phase factor such
that the real and imaginary parts of vi are orthogonal, that is,
Re(e jζ vi )T Im(e jζ vi ) = 0, yielding

ζ = −1

2
arctan

(
2 Re (vi )T Im(vi )

Re(vi )T Re(vi ) − Im(vi )T Im(vi )

)
. (12)

After the multiplication with the phase factor, the real and imag-
inary parts of the eigenvector correspond to the directions of the
major and the minor semi-axis of the polarization ellipse, respec-
tively.

If C contains a single pure-state wave [i.e. n = 1 in eq. (7)
within the time-frequency window], the polarization remains con-
stant within the analysis window K(
τ , 
f) while random noise
tends to cancel out. This results in a drop of the rank of the covari-
ance matrix, meaning that one eigenvalue λ1 of C will be signif-
icantly larger than the others. All information on the polarization
state of the wave will then be contained in the corresponding eigen-
vector v1. Depending on the wave type, this eigenvector will be
aligned with one of the polarization vectors in eqs (2)–(6), after
multiplication with the phase factor ejζ .

If C contains multiple arrivals or purely random noise, then more
than one eigenvalue will be non-zero and the corresponding eigen-
vectors do not necessarily align with one of the polarization models
anymore. A helpful measure to evaluate whether C represents a pure
state is the degree of polarization P2, which can be expressed by the
eigenvalues of the covariance matrix in the following way (eq. 18

in Samson & Olson 1980)

P2 =
∑6

j=1

∑6
k=1 (λ j − λk)2

10
(∑6

j=1 λ j

)2
. (13)

If P2 = 1, then C represents a pure state and the eigenvector of the
only significant eigenvalue should align with one of the polariza-
tion vectors in eqs (2)–(6). If C only contains random noise, the
polarization is isotropic (meaning it does not have a preferred di-
rection) and all eigenvalues will be non-zero and of similar order of
magnitude so that P2 → 0.

2.3 Efficient wave type fingerprinting by machine learning

To infer the wave type of an extracted polarization state at a local
point (τ , f), one can try to fit each of the polarization vectors in
eqs (2)–(6) to the principal eigenvector v1 of C(τ, f ) to find the
one that fits best. Doing so typically requires a grid-search over all
parameters θ for each wave model h. Various estimators can be used
to evaluate the fit of a specific polarization model, for example, the
maximum likelihood method (Christoffersson et al. 1988; Maranò
& Fäh 2013; Sollberger et al. 2020), orthogonal distance regression
(Wassermann et al. 2016) or the MUSIC algorithm (Sollberger et al.
2018). The latter has the advantage of enabling the simultaneous
estimation of the wave modes and wave parameters of multiple
superimposed pure states. However, such grid-search approaches
are computationally expensive due to the large parameter space that
needs to be explored. Additionally, the procedure has to be repeated
at each pixel (τ , f) in the time-frequency plane. This prohibits the
application of such approaches to large data volumes.

In this paper, we propose an alternative approach that separates
the problem of estimating wave parameters from the classification of
the wave type, thereby radically speeding up the process. To do so,
we use the supervised machine learning method of SVMs [see Ap-
pendix B for details on the implementation of the SVM algorithm].
A similar approach has been previously proposed by Barak (2017),
but in contrast to the approach described therein, we train our clas-
sifier in a completely data-independent fashion using a collection of
theoretical ’fingerprints’ given by the analytical polarization vectors
in eqs (2)–(6). The polarization vectors are parametrized with ran-
dom parameters drawn from a uniform distribution. The resulting
classifier is therefore fully independent of data errors and general-
izes well to different data sets. This is also fundamentally different
from three-component machine learning-based phase identification
schemes that typically rely on large training data sets of labelled
seismograms (e.g. Zhu & Beroza 2018; Ross et al. 2018).

To train the SVM (see Appendix B for details), we generate a
training data set consisting of N polarization vectors, each with a
random parametrization for each of the wave parameters α, β, ψ ,
φ, ξ , cL, and cR. Each i’th sample in the training data has 12 features
xi ∈ R

12 (i.e. the elements of the real and imaginary parts of the
polarization vector) and a label yi corresponding to one out of a
total of six classes, either one of the five wave types or noise. The
noise class comprises purely random polarization vectors, meaning
that all 12 features are selected from a random distribution. This
additional noise class offers an alternative measure to the degree
of polarization (eq. 13) to evaluate whether a polarized wave is
present at a specific point (τ , f) with the advantage that known
characteristics of the sensor noise (e.g. the noise variance on each of
the six channels) can theoretically be included in the training. The
training only takes a couple of seconds on a conventional laptop
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computer. After training, the classifier can be used to efficiently
predict (or fingerprint) the wave type of an extracted polarization
state v1 (the principal eigenvector of the covariance matrix).

2.3.1 Classification performance

To evaluate the performance of the proposed classifier, we train
an SVM using 5000 random polarization vectors for each class,
resulting in a training data set that consists of a total of N = 6
× 5000 samples. We parametrize the polarization vectors using
velocities that are typical for a near-surface setting. The velocities
are randomly drawn from a uniform distribution on the following
intervals: α ∈ [400 m s−1, 3000 m s−1], cR ∈ [100 m s−1, 3000
m s−1], and cL ∈ [100 m s−1, 3000 m s−1]. The shear wave velocity
β is computed from α using randomly selected P- to S-wave velocity
ratios drawn from the interval α/β ∈ [1.7, 2.4]. We allow for the
classification of waves arriving from all directions (i.e. φ ∈ [0◦,
360◦] and ψ ∈ [0◦, 90◦]). The Rayleigh wave particle motion can
either be prograde or retrograde, and we allow Rayleigh waves to be
both elliptically and rectilinearly polarized (i.e. ξ ∈ [−90◦, 90◦]).

Note that, in this example, we keep the range of parameters
relatively wide as to not introduce any bias during the training.
The trained classifier should therefore be able to detect wave types
independent of their arrival direction and their local propagation
velocity. Any prior knowledge on the local wavefield parameters
can be used in the specification of the training parameters to steer
the classifier to only detect specific waves (e.g. waves arriving from
a certain direction or with a certain speed), thereby achieving an
even better separation of the wave types.

After training, we evaluate the performance of the classifier on
a test set of another 6000 randomly generated polarization vectors
(1000 samples for each class with parameters drawn from the same
distributions as above) that are independent of the polarization vec-
tors used in the training. Out of the 6000 tested polarization vectors,
90.5 per cent are classified with the correct label, confirming that
the classification problem is well separable and that 6-C polarization
is indeed an effective indicator of the seismic wave type, even for
the very wide range of wave parameters used in the training.

To better understand the samples of the test data that are assigned
an incorrect label, we inspect the so-called confusion matrix in
Fig. 2. The number listed in each element of the matrix indicates
the percentage of samples in the test data that belong to a true
class indicated by the row of the matrix and that receive a specific
predicted label indicated by the column of the matrix. Ideally, if the
problem was perfectly separable, only the elements on the diagonal
of the matrix would be non-zero. Inspecting the confusion matrix, it
becomes clear that most of the wrong predictions can be explained
by a confusion between SH- and Love waves. This is not surprising
since, as previously mentioned, the fingerprints of the two waves
become indistinguishable from each other if the SH waves propagate
horizontally (ψ → 90◦). Note that Love waves are less likely to
be misclassified (<1 per cent) than SH-waves. The reason being
that, during training, Love waves inherently receive a higher weight
in the decision of ambiguous cases since they are strictly always
horizontally propagating. Assigning the SH class to Love waves
would therefore result in more misclassified samples in the training
data [and thus a higher penalty term according to eq. (B1)] than the
wrongful assignment of the Love wave class to the SH-class.

SV-waves are assigned the wrong label in 6 per cent of the tested
cases, where most confusion occurs with Love and SH-waves. When

Figure 2. Evaluation of the wave type classification performance of the
proposed SVM algorithm on an independent test data set.

inspecting the 6-C polarization vector of SV-waves eq. (3), it be-
comes apparent that at the special case of close-to-vertical inci-
dence (i.e. ψ → 0◦), SV-motion becomes indistinguishable from
SH-motion since the rotational motions disappear and all motion
is restricted to the horizontal, translational components. The other
wave types are all classified with an accuracy above 99 per cent.

It should be noted that any machine learning technique could be
applied for this classification task (e.g. neural networks, random
forest classifiers, etc.). The choice of using a SVM was motivated
by the fact that the algorithm only requires little training data to
provide satisfactory results, is memory-efficient and provides good
classification results for the problem at hand. Additionally, it is a
relatively simple algorithm, seeking a linear separation of the data
and thus provides more intuition in the interpretation of the results
without having the ’black-box’ character that is inherent to other
machine learning techniques such as neural networks.

2.4 Wavefield separation

Employing the classifier described above yields a classification with
labels Y(τ , f) ∈ [1, 6], assigning each time-frequency pixel either to
one of the five wave types or to the noise class. We can now design
a filtering mask F(τ, f ) = [F1, . . . , F6]T (τ, f ) ∈ [0, 1] that either
isolates or suppresses specific wave modes. The mask takes on
values of 1 at points in the time-frequency plane where the desired
wave mode has been detected and 0 everywhere else. Instead of
simply multiplying the filtering mask with the data at each point (τ ,
p), we first project the data onto a new coordinate frame that aligns
with the eigenvectors vi of C(τ, f ). The data are then multiplied
with the filtering mask and subsequently projected back into the
original coordinate frame to yield the S-transform of the filtered
data D̃F (τ, f ) as

D̃F (τ, f ) = (
F(τ, f ) ◦ [

D̃(τ, f )T V(τ, f )
])

VH , (14)

where V(τ, f ) is a matrix whose columns are the eigenvectors of
C(τ, f ) and ◦ denotes the Hadamard product (element-wise multi-
plication). Depending on whether a polarization state should be kept
or removed from the data, specific elements of the filtering mask can
be chosen to be non-zero. For example, if the detected wave mode
at point (τ , f) should be kept in the filtered data, the filter mask is
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defined such that F1(τ , f) = 1 and F2, . . . , 6(τ , f) = 0. In this way, all
motion that is orthogonal to the motion of the dominant polarization
state is removed. If a specific wave type should be suppressed F1(τ ,
f) = 0 and F2, . . . , 6(τ , f) = 1, meaning that any underlying signal that
is orthogonal to the dominant polarization state will be preserved
in the filtered data. The projection onto the eigenvectors in eq. (14)
thus ensures the best possible separation with the least amount of
leakage of other wave modes.

After filtering, the inverse S-transform is applied to bring the data
back to the time domain, yielding filtered 6-C waveforms d̃F (t) ∈
R

6. Here, we use the inverse S-transform proposed by Schimmel &
Gallart (2005), providing a better time-localization of the filtered
data compared to the conventional inverse S-transform

d̃F (t) = k
√

2π

∫ ∞

−∞

D̃F (τ, f )

| f | e+i2π f t d f. (15)

It should be noted that this inverse transform is an approximation
to the true inverse S-transform, even though a very good one. The
level of approximation is described by Simon et al. (2007). Due
to the better time localization of the filtered data compared to the
conventional S-transform, we prefer to use this inverse transform
over the conventional inverse S-transform in this application.

3 E X A M P L E S

We illustrate the proposed wave type classification and wavefield
separation approach with three use cases. First, the algorithm is
tested on a field data example of a teleseismic earthquake recorded
on the ROMY ring laser gyroscope (Igel et al. 2021). We show that
the approach highly facilitates the interpretation of seismograms in
the single-station case and enables the automatic picking of different
seismic phases. We then apply the algorithm with the goal to iden-
tify and suppress complex, scattered surface waves in land seismic
exploration data where we use a synthetic data set that is realistic
for a challenging karstified environment. Ultimately, we show how
the proposed algorithm can be used to efficiently detect Rayleigh
and Love waves in ambient noise recordings, allowing for the as-
sessment of the source distribution and source types in the noise
field and the close-to real-time extraction of surface wave disper-
sion curves, which could, in the future, prove useful for monitoring
applications.

3.1 Single-station analysis of an earthquake recording

We apply the proposed phase identification scheme to data recorded
on the multicomponent ring-laser observatory ROMY—located in
Fürstenfeldbruck, Germany—constituting the most accurate six
degree-of-freedom ground motion measurement system to date
(Igel et al. 2021). The data were recorded after the occurrence of a
magnitude 7.9 earthquake in the Gulf of Alaska (exact occurrence
time: 2018-01-23 09:31:40 UTC).

Fig. 3(a) shows 1 h of 6-C data as recorded by ROMY, where t
= 0 s corresponds to the origin time of the Gulf of Alaska earth-
quake. The translational components are displayed in black and
the rotational components in red. The rotational data are shown in
units of rotational velocity (rad s−1), and the translational data were
converted to the same units by applying a scaling slowness p to
the acceleration seismograms, where p was computed according to
eq. (8; yielding a value of p ≈ 4500−1 s m−1).

The S-transform (computed with k = 1) of the vertical, trans-
lational component is displayed in Fig. 3(b), showing the onset of

body-wave phases (P- and S-waves) above 0.05 Hz and the disper-
sive surface-wave train at lower frequencies after about 2000 s.

Time- and frequency-dependent six-component polarization
states were computed within a time-frequency window K(
τ , 
f)
that extended over five dominant periods in time (
τ = 5 × 1/f
s) and over 0.1 mHz in frequency (
f = 1 × 10−4 z) according to
eqs (10–13) The six-component degree of polarization [eq. (13)] is
shown in Fig. 3(c), indicating regions in the time-frequency plane
where pure states of motion are detected (i.e. the polarization re-
mains constant within the specified time-frequency window). A
high degree of polarization (eq. 13) is observed at the onset of the
first-arriving motion and in specific regions in the seismic coda.

We then applied an SVM classifier to the extracted polarization
states as described above. The training of the SVM was performed
with 6C polarization models parametrized randomly with samples
drawn from the following uniform distributions: α, cR, cL ∈ [1000
m s−1, 4000 m s−1], α/β ∈ [1.7, 2.4], φ ∈ [0◦, 360◦], ψ ∈ [0◦,
80◦] and ξ ∈ [−90◦, 90◦]. Note that the training parameters are
slightly different from the ones used in Section 2.3.1 to better re-
flect the significantly higher wave velocities that are observed at
long periods. We excluded waves at close-to-horizontal incidence
from the training, i.e. ψ > 80◦, to avoid confusions between differ-
ent wave types that can occur in this inclination angle range (see
Section 2.3.1). Since horizontally propagating SH- and Love waves
cannot be distinguished from each other, we assign them to a single
class comprising all SH-type motion.

The obtained classification results with labels Y(τ , f) obtained
for the principal eigenvector v1 are colour-coded and displayed in
Fig. 3(d). The classifier accurately assigns the first-arriving motion
to the P-wave class (blue). Three distinct P-wave arrivals are iden-
tified. The onset of the direct S-wave is identified at about 1260 s,
where the classification result suggest a mix of SV-type (in red) and
SH-type (in green) motion. The S-wave motion is trailed by the sur-
face wave train with Love waves arriving first (in green) followed
by highly dispersive Rayleigh waves (in yellow).

We further evaluated whether the classification scheme could be
applied to identify multiple polarization states that overlap in both
time and frequency. This should be possible as long as the po-
larization states in question are close-to-orthogonal to each other.
This can be the case for overlapping SH- and SV-waves or Love
and Rayleigh waves arriving from similar directions. We therefore
applied the classifier a second time, this time to the eigenvector v2

that is associated with the second-largest eigenvalue. The results are
displayed in Fig. 3(e). Most of the second eigenvectors are assigned
to the noise class, meaning that a single wave mode dominates the
particle motion at most points (τ , f) in the time-frequency plane.
However, it can be observed that the surface wave train is composed
of both Love and Rayleigh waves where Love wave motion domi-
nates over Rayleigh wave motion in the early parts of the surface
wave train and vice versa in the later parts. As expected, regions in
the time-frequency plane where two overlapping wave modes are
detected coincide with regions that show a relatively low degree of
polarization.

We then filtered the data according to eq. (14) and applied the
inverse S-transform (eq. 15) to obtain the single wave-type seismo-
grams displayed in Fig. 4(b)–(e). The vertical lines in Fig. 4 repre-
sent ray-theoretical arrival times predicted in the iasp91 model of
Kennett & Engdahl (1991). Note that the arrival times of signifi-
cant key phases in the separated data matches with the predicted
arrival times obtained from ray tracing. Some Rayleigh wave energy
seems to arrive before the arrival of the main Rayleigh wave train
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Figure 3. Example of time-frequency-dependent automated seismic phase identification by 6-C polarization analysis. (a) 6-C seismogram of the 2018 Gulf
of Alaska earthquake, the time axis is relative to the event origin time. The translational components have been converted to a ‘pseudo rotation rate’ (refer to
the text for details). (b) S-transform of the vertical, translational component. (c) Six-component degree of polarization (colourmap clipped at 0.7). (d) Wave
type classification of the first eigenvector. (e) Wave type classification of the second eigenvector. For better readability, results in (c)–(e) are only plotted at
time-frequency points where the signal level exceeds 5 per cent of the maximum amplitude.

in the separated data. This could potentially be explained by near-
surface P-to-Rayleigh conversions at higher frequencies, which have
been previously observed for teleseismic earthquakes (e.g. Zhang
& Langston 2022).

The separated seismograms are significantly easier to interpret
than the original six-component data (Fig. 4a) and could be used,
for example, for automated picking of specific phase arrivals, for
pick refinements, or for the identification of exotic phases that are
hard to be found in the raw data. Additionally, the separated data
could provide a way to compute more reliable receiver functions.

3.2 Aliased ground-roll suppression

Surface waves (often referred to as ground-roll) pose a major chal-
lenge to land seismic exploration since they can obscure reflection
signals from subsurface reflectors of interest. Conventional ground-
roll suppression techniques such as f-k- or τ -p-filtering rely on the
identification and isolation of the surface waves based on their lower
moveout velocity across receiver arrays compared to body waves
and require that the surface waves are appropriately sampled in
space. Since ground-roll is the shortest wavelength component in
the recorded data, this undesired signal component typically dic-
tates the spatial sampling in land seismic exploration. Additionally,
conventional ground-roll filtering techniques struggle with the sup-
pression of side-scattered surface waves.

As an alternative to array processing, ground-roll can be identi-
fied and suppressed with a single geophone by the application of
three-component polarization filtering (e.g. de Franco & Musacchio
2001; Jin & Ronen 2005; Kendall 2006), enabling the filtering of
spatially aliased ground-roll with the potential to significantly lower
the field effort and thus the survey costs. This kind of filtering is
based on the assumption that ground-roll purely consists of ellip-
tically polarized Rayleigh waves. In reality, this assumption is not
necessarily fulfiled since ground-roll can sometimes retain a linear
polarization (Kragh & Peardon 1995) and the horizontal geophone
components can be significantly contaminated by Love waves.

Rotational data can help to improve single-receiver ground-roll
identification and suppression (e.g. Muyzert et al. 2012; Edme &
Muyzert 2013; Barak et al. 2014; Barak 2017; Muyzert et al. 2019;
Allouche et al. 2020) since they provide an additional, powerful
discrimination criterion besides the ellipticity to distinguish body
waves from ground-roll, namely, the local propagation velocity of
the wave. Since the amplitudes of rotational motions inversely scale
with the wave’s velocity [see, for example, factor c−1

R in eq. (5)],
rotational data are typically dominated by the low-velocity ground-
roll, thereby facilitating its identification and suppression.

Here, we test the proposed machine learning-based wavefield sep-
aration scheme for the single-station suppression of aliased ground-
roll. Since rotational sensors are not yet widely available for use in
land-seismic exploration, we test the scheme on a synthetic data
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Figure 4. Wavefield separation on the example of the 2018 Gulf of Alaska earthquake. (a) Six-component input data and separated (b) P-wave, (c) SV-wave,
(d) Rayleigh wave and (e) Love wave components. Vertical lines mark predicted arrival times of some key phases obtained by ray tracing in the model of
Kennett & Engdahl (1991). Note that the time axis is relative to the event origin time.

set obtained via elastic finite-difference simulations in the Arid
model of the SEAM Phase II consortium for land-seismic challenges
(Oristaglio 2015). The Arid model was designed to represent an ex-
treme desert environment with geological features such as karsts,
wadis, sand, outcropping bedrock and unusual topography. All of
these features introduce anisotropy and can cause intense scatter-
ing of elastic waves and in the near-surface generating complex,
side-scattered and aliased ground-roll that is difficult to suppress
with conventional methods.

A shot gather of simulated six-component data is shown in
Fig. 5(a), for an east–west oriented receiver line. To facilitate the
evaluation of the wavefield separation scheme, we added a single,
artificial P-wave reflection to the shotgathers (visible intercepting
the time axis at about 1.75 s). Note that there is significant energy
in the crossline north component of the translational data (labelled
with traN), suggesting the presence of side-scattered waves and
SH-waves.

We applied the proposed six-component wavefield separation
scheme with the goal to identify and suppress ground-roll (Rayleigh
and Love waves) using a SVM that was trained with the following
parameter distributions: cR, cL ∈ [400 m s−1, 1000 m s−1], α ∈
[1050 m s−1, 5000 m s−1], α/β ∈ [1.7, 2.4], φ ∈ [0◦, 360◦], ψ ∈
[0◦, 80◦] and ξ ∈ [−90◦, 90◦]. Note that the training data implicitly
includes the wave velocity as a discrimination criterion. Constraints
on the wave types from prior knowledge (here, the lower velocity of
ground-roll compared to body waves) can thus be easily included

in the filtering by restricting the parameter range of the polarization
models during the training.

The result of separating the ground-roll from any underlying sig-
nal is shown in Figs 5(b) and (c). The complex ground-roll seems
to be accurately detected and isolated from the data, independent
of its arrival direction, resulting in a ground-roll reduction of ap-
proximately 20 dB on the vertical translational component. Since
the filtering is applied locally at each receiver location, it is not
affected by spatial aliasing. Note that the artificial P-wave reflection
is preserved in the filtered data in Fig. 5(c).

3.3 Ambient noise analysis

The analysis of rotational motions in the ambient noise wavefield
can help to characterize the noise sources (e.g. Hadziioannou et al.
2012; Tanimoto et al. 2015, 2016) and to extract local surface wave
dispersion curves (e.g. Kurrle et al. 2010; Edme & Yuan 2016;
Wassermann et al. 2016; Yoshida & Uebayashi 2020).

With the recent availability of sensitive, portable rotation sensors,
Keil et al. (2021) could successfully extract near-surface dispersion
curves from six-component recordings of urban noise using the pi-
oneering method of Wassermann et al. (2016). The single-station,
six-component method appears to yield comparable results to con-
ventional array methods (Keil et al. 2022). Key advantages of the
six-component approach over array methods is the overall reduced
logistical effort during deployment and maintenance. Additionally,
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Figure 5. Suppression of aliased and side-scattered ground-roll using the
proposed filtering method. (a) Six-component shot gather used as an input for
filtering. (b) Separated ground-roll component (Love and Rayleigh waves)
obtained individually at each recording position. (c) Remaining signal after
the suppression of ground-roll.

the single-station approach yields dispersion curves that are truly
local, without smearing out the extracted velocity information over
the aperture of an array (e.g. Tang & Fang 2022).

Here, we apply the proposed wave type fingerprinting scheme
to a six-component seismic recording of urban noise, recorded in
the city centre of Munich with an iXblue blueSeis-3A rotation sen-
sor together with a Nanometrics Trillium Compact seismometer
(please refer to Keil et al. 2021, for details on this data set). We
analyse about 2 h and 40 min of data. The six-component recording
is shown in Fig 6. We first filtered the data with a series of narrow
bandpass filters (each a quarter octave wide) to non-overlapping
frequency bands between 1 and 20 Hz. For each filtered time-series,
we then computed the data covariance matrix of the complex an-
alytic signal within a sliding time-window that extended over two
periods, according to eq. (10). The time domain approach with the
analytic signal was chosen over the S-transform for this application
simply because it is more memory-efficient when processing such
long time-series. We then classified the principal eigenvector with
the proposed fingerprinting scheme. The training parameters of the
SVM corresponded to the ones described in Section 2.3.1. The bot-
tom panel in Fig. 6 shows the classification result at each position of
the sliding time window (for the data filtered with a bandpass filter
centred at 14 Hz). The recorded wavefield appears to be mainly
dominated by Rayleigh and SV-type motion, with additional less
frequent detections of P- and Love waves.

Once the wave type is known, specific Rayleigh wave and Love
wave parameters (phase velocity, azimuth and ellipticity angle) can
be easily extracted from their polarization states (principal eigen-
vectors). According to the Love wave polarization model in eq. (6),
the Love wave phase velocity for a time window centred at τ with
the data filtered to the frequency f can be estimated from the princi-
pal eigenvectors v1(τ, f ) ∈ C

6 = [v1, . . . , v6]T (τ, f ) that were as-
signed to the Love wave class as

cL = − [sin φL Re(v1) − cos φL Re(v2)]

2 Re(v6)
, (16)

where the dependency on (τ , f) is implicit. The propagation azimuth
of the Love wave is obtained by

φL = arctan2 (Re(v2), Re(v1)) + π

2
. (17)

For eigenvectors that were assigned to the Rayleigh wave class,
we can estimate the Rayleigh wave phase velocity as

cR = Re(v3)

[sin φR Re(v4) − cos φR Re(v5)]
, (18)

where the Rayleigh wave propagation azimuth is obtained via

φR = arctan2 (Im(v2), Im(v1)) . (19)

Ultimately, we can estimate the Rayleigh wave ellipticity angle as

ξ = arctan

(
cos φR Im(v1) + sin φR Im(v2)

Re(v3)

)
. (20)

In eqs (17), (19) and (20), special care needs to be given to the
sign of the individual components of the principal eigenvector, to
ensure that the back-azimuth can be recovered on the full 360◦

interval and that the correct sign of the ellipticty angle (prograde or
retrograde motion) is retrieved.

Note that without the initial step of wave type classification,
there would be little meaning to the values obtained by eqs (16)–
(20). The equations only yield the desired wave properties if the
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Figure 6. Six-component recording of about 2 h and 40 min of urban noise. Ground acceleration is shown in black, ground rotation rate in red. The bottom
panel shows the result of applying the proposed wave type classification scheme to the recordings above (classification obtained at 14 Hz). Black dots mark the
detection of a specific wave type in the analysis time window. Note that the results seem to imply that the recorded wavefield is dominated by SV- and Rayleigh
wave motion.

extracted eigenvector indeed corresponds to the polarization of the
specified wave type. We therefore argue that an initial step of wave-
type classification is unavoidable before estimating any wavefield
properties from rotational recordings (see Section 4 for a more
detailed discussion).

Histograms of the estimated frequency-dependent Love and
Rayleigh wave phase velocities and the Rayleigh wave ellipticity
angle are displayed in Fig. 7 for bins with a width of 25 m s−1 and
1.8◦, respectively. Both the Love and Rayleigh wave phase velocity
show the typical dispersion characteristic with a decrease in the
estimated phase velocity with frequency. Below 5 Hz, the phase
velocity curve drops to 0 since the rotation rates fall below the
instrument self-noise of the rotational seismometer, as suggested
by Keil et al. (2021). As a result, below 5 Hz, the denominator in
eqs (16) and (18) dominates over the numerator due to the self-noise
in the rotational components, leading to estimated phase velocities
that are close to 0.

The estimated, frequency-dependent Rayleigh wave ellipticity
angle is predominantly negative (Fig 7c), indicating retrograde mo-
tion. The bifurcation of the ellipticity curve between 5 and 15 Hz
could indicate the presence of higher modes, which are difficult
to characterize with the given approach since it is assumed that
only a single wave mode is present in each analysis window. Note
that the information on the sense of rotation of Rayleigh waves is
not available from conventional H/V analysis with single-station
three-component seismometers and can potentially help to better
constrain the inversion for structural models (Hobiger et al. 2016;
Maranò et al. 2017).

The detection rate of Love and Rayleigh waves at each frequency
is displayed in Figs 7(e)–(g), where the detection rate is defined as
the percentage of the total number of analysed time windows, in
which a specific wave type was detected. This provides an intuitive
way to understand the frequency-dependent wave type composition

of the recorded noise field. Above 10 Hz, Rayleigh waves seem to
dominate over Love waves in the analysed urban noise time-series.
Below 10 Hz, more Love than Rayleigh wave energy appears to be
present. Spurious Love and Rayleigh wave detections seem to occur
at frequencies below 5 Hz, where the urban noise level drops below
the instrument self-noise of the rotational seismometer, suggesting
that the polarization of the sensor self noise is aligned with the po-
larization models of Love and Rayleigh waves. Such misdetections
could potentially be avoided if the self-noise characteristics of the
used seismometers would be included in the training of the noise
class of the SVM.

To provide an additional measure of the quality of the extracted
dispersion curves, we analyse the degree of polarization (eq. 13)
of the six-component motion in each of the analysis time windows
where a Love or Rayleigh wave was detected (Figs 7h–j). Ideally, the
wave parameters are extracted from pure states with a degree of po-
larization close to unity. Lower values for the degree of polarization
indicate that the recorded motion deviates from a pure state either
due to the interference of other wave types or due to high noise
levels. Therefore, less confidence should be given to estimates ob-
tained from time windows that show a low degree of polarization.
For the analysed data, a high degree of polarization close to 1 is
only obtained for high frequencies (>15 Hz). Below that, the de-
gree of polarization decreases with frequency both for Love and
Rayleigh waves. We expect that this is likely due to the decrease of
the signal-to-noise ratio as the signal levels approach the instrument
self-noise due to the lack of strong low-frequency sources. Before
inverting the dispersion curves for subsurface structure, the degree
of polarization could potentially be used to weight the extracted
phase velocity and ellipticity angle values to only include values
with a high level of confidence [similarly to the weighting scheme
proposed by Wassermann et al. (2016)]. However, the inversion of
the extracted dispersion curves goes beyond the scope of this paper.
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Figure 7. Frequency-dependent phase velocity for Love (a) and Rayleigh waves (b) and Rayleigh wave ellipticiy angle (c) estimated from the single-station
six-component urban noise recording in Fig. 6. Red lines mark the median of the parameters extracted at each frequency. Panel (e) shows, for each analysed
frequency band, the percentage of the total number of analysed time windows in which a Love wave was detected. Panels (f) and (g) are identical and show the
percentage of the total number of analysed time windows in which a Rayleigh wave was detected. Panels (h)–(j) show the binned degree of polarization of all
time windows that were assigned to the Love wave or Rayleigh wave class.

Due to the low computational costs of the proposed wave type
fingerprinting scheme, dispersion curves such as the ones shown
in Fig. 7 can be extracted almost in real time and from very short
time-series (given that Love and Rayleigh waves are excited at the
frequency-band of interest) without the need to compute cross-
correlations. This could prove useful in the future for real-time
monitoring applications with ambient noise.

4 D I S C U S S I O N

Wave type fingerprinting, as described in this paper, is achieved by
using a machine-learning based classification model that is trained
using analytically derived polarization models. Theoretically, these
models are only valid for plane waves in an isotropic medium. The
plane-wave assumption might not be fulfiled when the recording
station is located close to the source. However, we expect that the
violation of the plane wave assumption only has a negligible effect
on the wave type classification performance since the polarization
models mainly rely on the propagation direction of the wave, which

is always perpendicular to the wavefront at a single point of obser-
vation in space, even if the wavefront is not planar. Yet, it has to
be noted that a violation of the plane wave assumption will have an
impact on the subsequent estimation of wave parameters such as the
phase velocity (e.g. Wassermann et al. 2016). In the future, it will be
necessary to investigate whether the proposed scheme is applicable
to data in the presence of anisotropy, where the 6-C polarization can
differ from the polarization of the isotropic case (Pham et al. 2010;
Noe et al. 2022).

Multiple wave types that overlap in frequency and time can be
classified with the proposed scheme, as long as their polarization
is close to orthogonal. We expect that the scheme can be extended
to accurately fingerprint arbitrary mixtures of waves, when the el-
ements of the null space of the covariance matrix (spanned by the
eigenvectors corresponding to the smallest eigenvalues) are used as
features to train the classifier instead of the elements of the prin-
cipal eigenvector. The null-space will always be orthogonal to the
polarization states present in the covariance matrix, even if the polar-
ization states themselves are not orthogonal. Null-space algorithms,
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such as the MUSIC algorithm, have been successfully used in the
past to characterize multiple interfering six-component polarization
states (Sollberger et al. 2018).

The extraction of phase velocities from combined measurements
of rotational and translational motion typically relies on the compu-
tation of simple amplitude ratios between different components of
the recorded motion. The velocities that are extracted in such a way
can only provide meaningful information on the actual phase veloc-
ity, if the wave type of the recorded motion is known. Otherwise,
the extracted amplitude ratios only have little meaning and can take
on random values that can lead to a wrong interpretation (e.g. if an
analysis time window only contains random noise). In previously
existing methods, the estimation of the wave type has been implic-
itly included in the estimation of the wave parameters. For example,
for Love waves, the estimation of the wave type is simple, since
Love waves are the only wave type that exhibit rotational motion
around the vertical axis. One only needs to make sure that a Love
wave is present in the analysis window before estimating the phase
velocity, for example, by verifying that a linear correlation exists
between the transverse translation and the vertical rotation com-
ponents within the time window (e.g. Hadziioannou et al. 2012;
Wassermann et al. 2016). Such approaches constitute simple wave
type detection schemes with a simultaneous estimation of the wave
parameters (back-azimuth and phase velocity).

However, for other wave types, such as Rayleigh waves, such a
simplified approach might fail. For example, the Rayleigh wave
phase velocity estimation schemes proposed by Edme & Yuan
(2016) or Keil et al. (2021) rely on finding a linear relation between
the vertical translation and the transverse rotation component, for
example, by orthogonal distance regression for the unknown wave
parameters (back-azimuth and phase velocity). We expect that this
can introduce errors in the extracted dispersion curves since both
P- and SV-waves are also characterized by a linear relationship be-
tween the vertical translation and the transverse rotation component
according to the polarization models presented in eqs (2) and (3).
This can potentially lead to the leakage of body waves into the
Rayleigh wave dispersion curves and possibly to an erroneous es-
timation of the phase velocities. This effect is probably negligible
in most cases since the ambient noise field is typically dominated
by surface waves, but could become significant in the presence of
strong sources that radiate a significant amount of body wave energy.
Here, more sophisticated wave type classification schemes, such as
the one described in this paper can potentially help to avoid this
issue, since it allows one to fully discriminate between P-, SV-, SH-
and Rayleigh wave motion. The initial step of classification thereby
ensures that minimal leakage of other wave types occurs that could
contaminate the extracted wave parameters and dispersion curves.

5 C O N C LU S I O N

We have introduced an efficient machine learning-based wave type
fingerprinting and wavefield separation scheme for six-component
ground-motion recordings that can be used to rapidly classify
seismic phases for large volumes of single-station data. Unlike
three-component recordings, six-component recordings of com-
bined translational and rotational motion enable the full discrim-
ination between P-, SV-, SH- and Rayleigh wave motion.

We have shown that the proposed scheme can highly facilitate
the interpretation of seismic data from sparse sensor networks and
enable improved single-receiver polarization filtering to suppress
ground-roll in land seismic exploration. Additionally, the proposed

scheme can provide valuable insights into the wave type composi-
tion of the ambient noise field.

After the classification of the wave type of a recorded seismic
phase, wave parameters such as the phase velocity, propagation
direction and ellipticity can be directly estimated from its six-
component polarization state without the need for computationally
expensive grid-search algorithms. We have shown that this enables
the extraction of Rayleigh and Love wave dispersion curves and
frequency-dependent Rayleigh wave ellipticity from short record-
ings of ambient noise almost in real-time and at low computational
costs, rendering the scheme attractive for use in monitoring appli-
cations. The extracted dispersion curves are truly local without the
effect of smearing out the velocity information over the aperture of
an array as in conventional approaches.
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Allouche, N., Øzdemir, K., Özbek, A. & Hopperstad, J.-F., 2020. Multimea-

surement aliased-noise attenuation for sparse land seismic acquisition
using compressed sensing, Geophysics, 85(2), V183–V200.

Barak, O., 2017. Seismic rotational data: Acquisition, processing and app
lications, Ph.D. thesis, Stanford University,141.

Barak, O., Herkenhoff, F., Dash, R., Jaiswal, P., Giles, J., de Ridder, S., Brune,
R. & Ronen, S., 2014. Six-component seismic land data acquired with
geophones and rotation sensors: Wave-mode selectivity by application of
multicomponent polarization filtering, Leading Edge, 33, 1224–1232.

Christoffersson, A., Husebye, E.S. & Ingate, S.F., 1988. Wavefield de-
composition using ml-probabilities in modelling single-site 3-component
records, Geophys. J. Int., 93, 197–213.

Cochard, A. et al., 2006. Rotational Motions in Seismology: theory, Obser-
vation, simulation, pp. 391–411, Springer.

Cortes, C., Vapnik, V. & Saitta, L., 1995. Support-vector networks, Mach.
Learn., 20, 273–297.

de Franco, R. & Musacchio, G., 2001. Polarization filter with singular value
decomposition, Geophysics, 66, 932,.

Edme, P. & Muyzert, E., 2013. Rotational data measurement, 75th EAGE
Conference & Exhibition, European Association of Geoscientists & En-
gineers, doi:10.3997/2214-4609.20130382.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/234/1/25/7036774 by Belgian R

oyal O
bservatory user on 30 June 2023

https://twistpy.org
https://github.com/solldavid/TwistPy
http://dx.doi.org/10.1190/geo2019-0220.1
http://sepd8.sites.stanford.edu/publications/theses/seismic-rotational-data-acquisition-processing-and-applications-sep-167
http://dx.doi.org/10.1190/tle33111224.1
http://dx.doi.org/10.1111/j.1365-246X.1988.tb01996.x
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1190/1.1444983
http://dx.doi.org/


6C fingerprinting 37

Edme, P. & Yuan, S., 2016. Local dispersion curve estimation from seismic
ambient noise using spatial gradients, Interpretation, 4, SJ17–SJ27.

Edme, P., Daly, M., Muyzert, E. & Kragh, E., 2013. Side scattered noise
attenuation using rotation data, 75th EAGE Conference & Exhibition,
European Association of Geoscientists & Engineers, doi:10.3997/2214-
4609.20130306.

Flinn, E., 1965. Signal analysis using rectilinearity and direction of particle
motion, Proc. IEEE, 53(12), 1874–1876.

Greenhalgh, S., Sollberger, D., Schmelzbach, C. & Rutty, M., 2018. Single-
station polarization analysis applied to seismic wavefields: a tutorial, Adv.
Geophys., 59, 123–170.

Hadziioannou, C., Gaebler, P., Schreiber, U., Wassermann, J. & Igel, H.,
2012. Examining ambient noise using colocated measurements of rota-
tional and translational motion, J. seism., 16, 787–796.

Hobiger, M., Cornou, C., Bard, P.-Y., Le Bihan, N. & Imperatori, W., 2016.
Analysis of seismic waves crossing the Santa Clara Valley using the
three-component MUSIQUE array algorithm, Geophys. J. Int., 207(1),
439–456.

Hsu, C.-W., Chang, C.-C. & Lin, C.-J., 2003. A Practical Guide To Support
Vector Classification, Technical report, National Taiwan University, Avail-
able from: https://www.csie.ntu.edu.tw/∼cjlin/papers/guide/guide.pdf .

Igel, H. et al., 2021. ROMY: a multicomponent ring laser for geodesy and
geophysics, Geophys. J. Int., 225(1), 684–698.

Jin, S. & Ronen, S., 2005. Ground roll detection and attenuation by 3c polar-
ization analysis, 67th EAGE Conference & Exhibition, European Associ-
ation of Geoscientists & Engineers, doi:10.3997/2214-4609-pdb.1.B020.

Keil, S., Wassermann, J. & Igel, H., 2021. Single-station seismic microzona-
tion using 6c measurements, J. seism., 103–114.

Keil, S., Wilczek, A., Wassermann, J. & Kremers, S., 2022. Comparing
single-station 6C measurements and array measurements for seismic mi-
crozonation in Munich, Germany, Geophys. J. Int., 231(3), 1634–1652.

Kendall, R., 2006. Advances in land multicomponent seismic: acquisition,
processing and interpretation, Recorder, 31.

Kennett, B.L.N. & Engdahl, E.R., 1991. Traveltimes for global earthquake
location and phase identification, Geophys. J. Int., 105(2), 429–465.

Kragh, E. & Peardon, L., 1995. Ground roll and polarization, First Break,
13, 369–378.

Kurrle, D., Igel, H., Ferreira, A.M., Wassermann, J. & Schreiber, U., 2010.
Can we estimate local love wave dispersion properties from collocated
amplitude measurements of translations and rotations?, Geophys. Res.
Lett., 37 doi:10.1029/2009GL042215.
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A P P E N D I X A : A M P L I T U D E S O F
R E F L E C T E D B O DY WAV E S AT A F R E E
S U R FA C E

The free surface 6C polarization vectors in eqs (2) and (3) for P- and
SV-waves depend on the amplitudes of the incident and reflected
waves. Here, we give explicit expressions of the amplitudes of the
reflected waves as a function of the inclination angle of the incident
wave ψ and the local P-wave and S-wave velocities α and β.

In the case of an incident P-wave of amplitude AP and inclination
ψ , the amplitudes of the reflected P-wave APP and the reflected
S-wave APS, normalized by the amplitude of the incident wave, are
given by (e.g. Achenbach 1973):

AP P

AP
(α, β, ψ) = sin 2ψ sin 2ψS − κ2cos22ψS

sin 2ψ sin 2ψS + κ2cos22ψS
, (A1)

and

AP S

AP
(α, β, ψ) = 2κ sin 2ψ cos 2ψS

sin 2ψ sin 2ψS + κ2cos22ψS
. (A2)

where the inclination angle of the reflected S-wave ψS is given by

sin ψS = κ−1 sin ψ, (A3)

where κ is the local P- to S-wave velocity ratio:

κ = α/β. (A4)

In the case of an incident SV-wave of amplitude AS and inclination
ψ , the amplitudes ASS of the reflected S-wave and ASP of the reflected
P-wave, normalized by the amplitude of the incident wave, are:

ASS

AS
(α, β,ψ) = sin 2ψ sin 2ψP − κ2cos22ψ

sin 2ψ sin 2ψP + κ2cos22ψ
, (A5)

and

AS P

AS
(α, β, ψ) = −κ sin 4ψ

sin 2ψ sin 2ψP + κ2cos22ψ
, (A6)

with the inclination ψP of the reflected P-wave:

sin ψP = κ sin ψ. (A7)

For the special case of an incident SV-wave at the critical in-
clination angle ψ = sin −1(1/κ) ≡ ψ cr, ψP becomes π /2 and the
amplitudes of the reflected waves are:

ASS

AS
= −1 (A8)

and

AS P

AS
(α, β) = [4(κ2 − 1)]/[κ(2 − κ2)], (A9)

Above the critical angle (ψ > ψ cr), sin ψP > 1, and thus ψP

becomes imaginary. Quantities ASS
AS

, and AS P
AS

then become (Nuttli
1961):

ASS

AS
(α, β,ψ) =

4(sin2ψ − κ−2)sin22ψsin2ψ − cos4ψ

+ 4 j
√

sin2ψ − κ−2 sin 2ψ sin ψcos22ψ

cos42ψ + 4(sin2ψ − κ−2)sin22ψsin2ψ
,

(A10)

Figure A1. Schematic illustration of SVM approach in the case of lin-
early separable data in a two-dimensional feature space (i.e. the separating
hyperplane becomes a line).

and

AS P

AS
(α, β, ψ) =

2κ−1 sin 2ψ cos 2ψ

(cos22ψ − 2 j
√

sin2ψ − κ−2 sin 2ψ sin ψ)

cos42ψ + 4(sin2ψ − κ−2)sin22ψ.sin2ψ
.

(A11)

Here, j indicates that SV particle motion above the critical angle
is not rectilinear anymore, but elliptical.

A P P E N D I X B : S U P P O RT V E C T O R
M A C H I N E C L A S S I F I C AT I O N

The SVM algorithm is a supervised machine learning technique
most commonly used in classification problems (Cortes et al. 1995).
The algorithm is based on the concept of locating the hyperplane that
best divides a labelled data set into two classes3 (Yu & Kim 2012).
Fig. A1 shows a schematic illustration of a binary classification
problem for the two classes marked with green circles and red
diamonds. In this case, the data are perfectly separable. Note that
an infinite number of hyperplanes can be defined that perfectly
separate the two classes. The SVM algorithm now tries to find
the one solution that maximizes the margin around the separating
hyperplane. The width of the margin is thereby defined by the data
points nearest to the separating hyperplane, which are called the
support vectors. They define where the hyperplane is positioned,
making them the most critical elements of the data set.

Consider we have a labelled training set of N samples with feature
vectors xi ∈ R

p(i = 1, N ), where p is the number of features, and
corresponding labels yi ∈ { − 1, 1}(i = 1, N) specifying whether a
given feature vector xi belongs to the first class (i.e. yi = 1) or to the
second class (i.e. yi = −1). For the specific classification problem
described in this paper, we have a total of 12 features (i.e. p = 12)

3Note that the SVM algorithm is designed as a binary classifier, meaning
that it can only distinguish between two classes. However, it is straightfor-
ward to extend the technique so that it can distinguish between multiple
classes using the heuristic one-versus-rest approach that splits the multi-
class classification problem into multiple binary classification problems.
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corresponding to the elements of the real and imaginary parts of the
6-C polarization vectors (eqs 2–6).

We now try to find a set of weights w ∈ R
p and a constant fac-

tor b that defines a hyperplane for which the prediction given by
sign(wT φ(xi ) + b) is correct for most samples. The SVC algorithm
now calls for the solution of the following optimization problem
(Hsu et al. 2003):

min
w,b,ζ

1

2
wT w + C

N∑
i=1

ζi (B1a)

subject to yi

(
wT φ (xi ) + b

) ≥ 1 − ζi , (B1b)

ζi ≥ 0, i = (1, . . . , N ). (B1c)

The minimization of 1
2 wT w will maximize the margin around

the separating hyperplane. Since not all problems are perfectly

Figure A2. Schematic illustration of mapping the data from the original fea-
ture space where the data are not linearly separable to a higher-dimensional
space where the data are linearly separable.

separable (i.e. certain samples might fall on the wrong side of the
plane), an additional penalty term is introduced when a sample is
misclassified or falls within the margin. If all samples would be
classified correctly, the term yi (wT φ(xi ) + b) would always be ≥1.
In reality, since the classes might not be perfectly separable, some
samples are allowed to be at a distance ζ i from their correct margin
boundaries. The strength of the penalty is defined by the parameter
C, which acts as an inverse regularization parameter.

The function φ(xi ) enables us to map the training features xi into
a higher dimensional space if the features are not linearly separable
in the original feature space, thereby making the problem more
flexible. In practice, it is not necessary to define the transformation
function φ(xi ) itself when implementing the optimization problem
in eq. (B1), but it is sufficient to know the so-called kernel function
K (xi , x j ) that computes the inner product of two feature vectors in
the transformed space:

K (xi , x j ) = φ(xi )
T φ(x j ) (B2)

For particular choices of the function φ(xi ), these inner products
can be computed very efficiently. In this paper, we use the radial
basis kernel function, which is defined with the free parameter γ

as:

K
(
xi , x j

) = exp
(
−γ

∥∥xi − x j

∥∥2
)

, γ > 0 (B3)

Fig. A2 shows a data set that is not linearly separable in the origi-
nal feature space. After mapping of the data to a higher dimensional
feature space using an appropriate mapping function φ(xi ), the data
become linearly separable.
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