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S U M M A R Y
We investigate the potential of multicomponent, single-point ground-motion observations
(displacement, rotation and strain) to allow the estimation of near-receiver anisotropic elastic
parameters. Based on full-space, plane-wave propagation analysis, we demonstrate that in
(locally homogeneous) anisotropic media, the wave propagation direction and the velocities
of quasi-P and quasi-S waves can—in principle—be determined from three components of
displacements and three components of rotations. Mimicking the situation of a borehole setting,
we formulate an inverse problem, estimating the full elastic tensor from multidirectional
observations. We show that in the presence of noise it is beneficial to observe additionally a
longitudinal strain component (e.g. along the borehole), further constraining the predominantly
quasi-P related elastic tensor components.

Key words: Joint inversion; Rotational seismology; Seismic anisotropy; Theoretical seis-
mology.

1 I N T RO D U C T I O N

Even though seismic anisotropy—the directional dependence of
propagation velocities in a homogeneous elastic medium—is often
considered as a second-order effect, it can be regarded as a ubiqui-
tous phenomenon inside our planet. The origin of seismic anisotropy
is manifold. Originally observed for horizontal wave propagation in
the upper mantle due to aligned crystals (e.g. Hess 1964), anisotropy
can be caused by aligned pore space or cracks (e.g. Crampin 1984),
bedding of sediments (e.g. Backus 1962), apparent anisotropy (e.g.
Babuška & Cara 1991), convective flow in the Earth’s inner core
(e.g. Morelli et al. 1986; Woodhouse et al. 1986; Song 1997),
and—as a consequence—provides the connection between the seis-
mic wavefield and internal dynamics in terms of convective flow,
strain/stress orientation and their temporal changes. Especially in
stratigraphic exploration, information about anisotropic parameters
leads to more precise assessments of lithology, fracture density and
flow paths for improved oil recovery (Corrigan et al. 1986; Wang
2002; Helbig & Thomsen 2005).

Seismology is classically built on the observation of at most three
ground-motion components of displacement (velocity or accelera-
tion). However, the theory of deformation of a fully elastic medium
not only includes three components of translation but also three
components of rotations and six components of strain (e.g. Aki
& Richards 2002; Stein & Wysession 2002; Cochard et al. 2006).
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With the recent advent of portable rotation sensing technologies
fit for broad-band observations (e.g. Bernauer et al. 2012, 2018;
Yuan et al. 2020) as well as the emerging potential of (longitudi-
nal) strain measurements using distributed acoustic sensing (DAS,
e.g. Lindsey & Martin 2021) entirely new observational concepts
for all fields of seismology, applied seismics and engineering are
possible.

It is well known that multicomponent ground-motion observa-
tions provide the opportunity to estimate wavefield properties (e.g.
phase velocities and propagation direction) otherwise only accessi-
ble through seismic array measurements (e.g. Pancha et al. 2000;
Igel et al. 2005, 2007; Cochard et al. 2006; Bernauer et al. 2009;
Fichtner & Igel 2009; Hadziioannou et al. 2012; Edme & Yuan
2016; Sollberger et al. 2017, 2020). So far, theoretical and field
studies of rotational motions were mainly based on the assumption
of isotropic elastic media. Exceptions are the analysis by Pham
et al. (2010), investigating the rotational components of P waves
in anisotropic media and the theoretical study by Tang & Fang
(2021) developing forward models in transversely isotropic media
for six-component ground motions.

Single-point wavefield analysis can be an important methodology
in situations in which seismic arrays are difficult or impossible
to realize. This applies to boreholes, the ocean bottom, remote
areas, volcanoes, cities, or planetary installations. Multicomponent
ground-motion observations can play an important role in improving
the resolution power for structural and seismic source parameters.
Recent examples are the local structural inversion in the context of
microzonation (Wassermann et al. 2016; Keil et al. 2020), moment
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tensor inversion (e.g. Donner et al. 2018), or planetary applications
(e.g. Bernauer et al. 2020).

In this study, we aim at extending the multicomponent wave-
field (or polarization) analysis (e.g. Sollberger et al. 2017, 2020)
to anisotropic elastic media. As a first step we solve the forward
problem of calculating waveforms for quasi-P (qP) and quasi-S
waves (qS) analytically assuming plane-wave propagation in un-
bounded homogeneous anisotropic media. In practical terms this
corresponds to a highly simplified application of multicomponent
downhole recordings at depth. We seek an answer to the question
whether at a single measurement point anisotropic wave velocities
can be estimated from multicomponent ground-motion observations
and under what conditions all anisotropic elastic tensor components
can be determined.

The paper is structured as follows: after this Introduction, we
present the basic plane-wave theory for wave propagation in
anisotropic media and displacement, rotation and strain observables.
Based on this formulation we pose an inverse problem strategy for
the elastic tensor. We apply this strategy to noise-free, and noisy
synthetic multidirectional plane-wave observations. The initial six-
component analysis is extended by adding one longitudinal strain
component (along the virtual borehole, a common experimental
setup), investigating the improvement in elastic tensor recovery. Fi-
nally, the results are discussed and an outlook to possible further
studies is given.

2 T H E O RY

2.1 Seismic translation, rotation and strain

2.1.1 Plane waves

Displacement u and acceleration ü of a plane harmonic seismic
wave propagating in a fully elastic homogeneous medium can be
described with following relationships depending on location x and
time t

u(x, t) = An exp
[
iω

(
t − ν · x

v

)]
(1)

ü(x, t) = ∂2
t u = −ω2 An exp

[
iω

(
t − ν · x

v

)]
(2)

where A is the ground displacement peak amplitude, n is the unit
translational polarization vector, ω is the angular frequency, ν is the
unit propagation direction vector, v is the phase velocity and i is the
imaginary unit.

Rotation rates �̇ are derived from translational motions by taking
half the curl of the velocity field (e.g. Igel et al. 2005; Cochard et al.
2006):

�̇(x, t) = 1

2
∇ × ∂t u = Aω2

2v

⎛
⎝ν2n3 − ν3n2

ν3n1 − ν1n3

ν1n2 − ν2n1

⎞
⎠ exp

[
iω

(
t − ν · x

v

)]
.

(3)

Strainmeters measure changes in length scale. Assuming that the
direction of measurement is along the vertical axis x3 then the
corresponding strain rate results in

ε̇33(x, t) = ∂t∂3u3 = Aω2ν3n3

v
exp

[
iω

(
t − ν · x

v

)]
. (4)

2.1.2 Material properties

Velocity v and polarization n are connected to the material properties
with the eigenproblem posed by the Kelvin–Christoffel equation
(see e.g. Musgrave 1970; Van Buskirk et al. 1986)

(� − ρv2I3) · u = 0 (5)

with the (3 × 3) identity matrix I3, the material density ρ

(isotropic constant) and the Kelvin–Christoffel matrix �. The
Kelvin–Christoffel matrix is symmetric and a projected representa-
tion of the elastic tensor along the propagation direction:

� = L · C · LT (6)

with

L =
⎛
⎝ν1 0 0 0 ν3 ν2

0 ν2 0 ν3 0 ν1

0 0 ν3 ν2 ν1 0

⎞
⎠ (7)

and the symmetric elastic tensor C with its 21 independent param-
eters

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

sym. C55 C56

C66

⎞
⎟⎟⎟⎟⎟⎟⎠

(8)

In this study, we derive an inversion scheme for the elastic tensor
C. Materials behaving similarly in all directions are called isotropic
and corresponding elastic tensor have two independent parameters.
Whenever the amount of independent parameters exceeds two, the
material behaves anisotropically since its characteristics (e.g. wave
velocities) depend on the propagation direction. Vertical transverse
isotropy (VTI)—symmetry is most commonly utilized in seismic
studies, since it addresses wave propagation in horizontally layered
rock. Directional dependencies of such a medium are attributed to
just one angle, which is the angle of incidence. VTI materials are
hexagonal with a vertically aligned symmetry axis and have five
independent elastic parameters (Love 1892).

CV T I =

⎛
⎜⎜⎜⎜⎜⎜⎝

C11 C11 − 2 · C66 C13 0 0 0
C11 C13 0 0 0

C33 0 0 0
C55 0 0

sym. C55 0
C66

⎞
⎟⎟⎟⎟⎟⎟⎠

(9)

When a material is perpendicularly fractured to its stratification,
the elastic tensor relates to orthorhombic symmetry (Schoenberg
& Helbig 1997). Hence, this symmetry system has recently gained
importance in local seismic tomography. Orthorhombic behaviour
is characterized by nine independent elastic parameters. Assuming
the symmetry directions are aligned with the coordinate axes, the
representation of the elastic tensor is as follows:

Cortho =

⎛
⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
C44 0 0

sym. C55 0
C66

⎞
⎟⎟⎟⎟⎟⎟⎠

. (10)

Wave propagation in a fully elastic medium follow the eigenprob-
lem described in eq. (5). The eigenvectors of the Kelvin–Christoffel
matrix are the polarizations n and corresponding eigenvalues are
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Figure 1. Exemplary synthetic six-component borehole seismogram inside
a VTI-medium (Taylor Sandstone) with acceleration ü and rotation rate �̇

during the arrivals of qP, qS1 and qS2 waves. Two important properties of
anisotropic media are evident, namely the splitting of shear waves and the
rotation of the qP wave. Portrayed measurements are perturbed with an SNR
of 30.

the product of velocity squared and density. In general, there are
three non-degenerate eigenvalues and hence there are three dis-
tinctly propagating wavefields denoted by qP, qS1 and qS2 (see
e.g. Crampin 1977). This is not the case under isotropic condi-
tions and also specific directions—called singularities—in general
anisotropic media in which qS1 and qS2 travel at the same velocity.
Separate arrivals of those waves are called shear wave splitting. An-
other general solution is that the polarizations are neither necessarily
parallel nor perpendicular to the propagation direction. So, in gen-
eral, all body waves (including qP waves) exhibit rotations (Pham
et al. 2010). Phenomena attributed to anisotropy are summarized
and visualized in Fig. 1. The symmetry of the Kelvin–Christoffel
matrix ensures that the set of body-wave polarization vectors form
an orthonormal basis. Further, � can be diagonalized with its eigen-
vectors and eigenvalues.

� =
⎛
⎝. n1 .

. n2 .

. n3 .

⎞
⎠

⎛
⎝ρv2

1 0 0
0 ρv2

2 0
0 0 ρv2

3

⎞
⎠

⎛
⎝ . . .

n1 n2 n3

. . .

⎞
⎠ (11)

Therefore, with known density, estimated wave velocities and cor-
responding polarizations, it is possible to reconstruct the Kelvin–
Christoffel matrix.

2.2 Inversion scheme—anisotropic elastic tensor
estimations using 6C observations

When examining eq. (6), one can recognize the usual constituents
for a linear inverse problem of the pattern

d = Gm (12)

where d is the data vector, m the model that is inverted for and
G the forward operator composed of propagation directions. In the
inverse problem at hand, the Kelvin–Christoffel matrix resembles
the observable, the model are the 21 elastic parameters and the
forward operator depends on the propagation direction. The model

m that minimizes squared errors can be found with

m ≈ (GT G)−1GT d (13)

To unambiguously solve for the model vector, the Kelvin–
Christoffel matrices of at least six events with different propagation
directions have to be calculated (Van Buskirk et al. 1986). Similar
approaches for elastic tensor inversions have been investigated in
the context of walkaway vertical seismic profiles by Dewangan &
Grechka (2003) and Asgharzadeh et al. (2013), a situation where
sources moved progressively further away while receivers remain at
fixed locations. In the following, we explain how propagation direc-
tions and wave velocities can be estimated from six-component
(translations and rotations) measurements at a single borehole
station.

2.3 Propagation direction estimation

We assume that the propagation direction is constant for all body
wave phases originating from one event. Since the method should be
valid for any symmetry system, the polarization of the P wave does
not act as an ideal indicator of the propagation direction. Instead, the
propagation direction can be estimated through the inspection of the
rotational components. Examining eq. (3) uncovers that rotational
polarizations r j induced by wave type j (either qP, qS1 or qS2) are
perpendicular to both their respective translational polarization and
the propagation direction (Pham et al. 2010).

r j ∝ ν × n j (14)

Since ν is a constant, the combined rotational motion of all phases is
bound by the plane defined through its orthogonality to the propaga-
tion direction. This 2-D vector space is unambiguously determined
when at least two of its (linearly independent) vectors are known.
Thus, the propagation direction can be retrieved by the cross-product
of two of those vectors (i �= j, i, j ∈{qP, qS1 or qS2}):

ν = ri × r j

||ri × r j || = (ν × ni ) × (ν × n j )

||ri × r j || (15)

The applicability of eq. (15) relies on measuring at least two dis-
tinctly polarized rotational signals because then rotational polar-
ization vectors ri and r j can be estimated from the measurements.
Therefore, this method cannot be applied in isotropic materials since
there is only one S-wave arrival and the P wave does not carry a
rotational signal. Of course, in this case, one would simply identify
the P-wave’s polarization or the vector perpendicular to both trans-
lational and rotational motions of the S wave as the propagation
direction.

Problems also arise in anisotropic media. Along singular direc-
tions, only one rotational signal can be recorded from the shear
waves. If the qP-wave rotation is sufficiently pronounced, it is pos-
sible to compare qP and qS rotations to deduce the propagation
direction. However, rotations on Earth are usually much smaller for
qP waves than for qS waves and therefore such results may come
with a significant error. Ideally, shear waves appear split and the
propagation direction estimation is based on their measured rota-
tions.

The forward operator G in eq. (13) embodies all considered
propagation directions and can therefore be interpreted as an in-
dication how the event distribution effects the inversion. Values
of (GT G)−1—given its solution is unique and exists—serve as a
preliminary hint at the geometric resolution of the elastic tensor
without considering the quality of velocity estimations. For exam-
ple, if signals from all events arrive near a horizontal angle, the bulk
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modulus in the vertical direction is expected to be poorly resolved
compared to those in horizontal directions since this parameter is
mainly determined by qP waves arriving at close to vertical angles.
Such preliminary assessments of expected resolution can be carried
out by inspecting the quantities of (GT G)−1.

2.4 Velocity estimation

The propagation direction must be determined prior to velocity
estimations. Since the six-component measurements fully capture
translational and rotational motions in three spatial directions, the
seismograms can be rotated into radial (R), transversal (T) and
vertical (V) directions. The propagation direction coincides with
the radial axis such that ν = (1, 0, 0)T. Within this new reference
frame, accelerations and rotation rates simplify to:

ü(x, t) = −ω2 A

⎛
⎝nR

nT

nV

⎞
⎠ exp

[
iω

(
t − ν·x

v

)]

�̇(x, t) = Aω2

2v

⎛
⎝ 0

−nV

nT

⎞
⎠ exp

[
iω

(
t − ν·x

v

)]
(16)

The entirety of rotational motion is acquired by transverse and
vertical axes. The ratio between translational and rotational ampli-
tudes on transversal and vertical components leads to an expression
for the phase velocity.

v = 1

2

√
ü2

T + ü2
V√

�̇2
T + �̇2

V

(17)

During the derivation of eq. (17), no assumption about wave
type was made. In fact, this velocity estimation works for qP, qS1
and qS2 waves equivalently. Shear wave velocity estimation with
comparable ratios between translational and rotational signals were
introduced before (see e.g. Cochard et al. 2006), however, to the
best of our knowledge, never expanded towards qP waves. By further
analysing eq. (17), it becomes apparent that the feasibility of the qP-
wave velocity estimation relies on the anisotropic properties of the
material; Under isotropic conditions, nominator and denominator
of eq. (17) both acquire the value zero—or when considering noise,
tiny values—and therefore the result of the ratio bears no relevant
physical meaning. Even before consulting the outcomes of synthetic
tests, we can hence already expect that the weak link of the 6C-
inversion scheme lies within the estimation of the qP-wave velocity.
Therefore, after the following section, a seven-component scheme
is presented that includes a strainmeter and enables an alternative
way to extract qP-wave velocities.

3 S Y N T H E T I C T E S T S

3.1 Experimental setup

To test the theory of inversion for elastic tensors developed in this
study, results from synthetic tests are presented in the following.
A hypothetical six-component sensor is placed in a borehole in a
homogeneous medium. Events are randomly distributed around this
receiver and source kinematics are isotropic in S and P. Body waves
travel from source to receiver in plane harmonic waves. The analyt-
ical solution to this problem is found with the Kelvin–Christoffel

equation (see eq. 5). To make the scenarios more realistic, the analyt-
ical recordings are perturbed by some noise. We choose white Gaus-
sian noise. Hence, the noise level is consistent among all frequencies
and is driven by a single input parameter—the signal-to-noise ra-
tio (SNR). Conveniently, since we simulate uniform amplitudes for
all body waves, the SNR does not deviate between the different
wave types. This hypothetical situation is illustrated in a sketch in
Fig. 2.

The rock Taylor Sandstone serves as the medium in all of the tests.
Its anisotropic properties are adapted from a real-world example and
belongs to the group of VTI materials. It was selected from the cat-
alogue listed in Thomsen (1986) because of its moderate strength in
anisotropy and the existence of an S-wave singularity (at ca. 42.5◦).
S-wave singularities appear in certain directions of anisotropic me-
dia where both S waves travel at the same velocity, that is, an angle
at which eigenvalues of the Kelvin–Christoffel matrix are degen-
erate. qP rotations are strongest around 58◦. VTI symmetry is at
the forefront when dealing with anisotropy in seismological stud-
ies and therefore we also utilize it here. Note however, that at no
point during the inversion scheme an assumption about the symmet-
ric characteristics of the material was made, and hence we aim at
resolving all 21 elastic parameters simultaneously—the inversion
treats the rock as if it was triclinic. To underline this statement,
the inversion scheme is further demonstrated on the orthorhombic
material phenolic CE. It is an industrial laminate that has been used
in physical seismic modelling studies (Cheadle et al. 1991). Details
about the materials in this study are provided in Appendix A.

At first, we take a look at the individual building blocks of the
inversion scheme, that is, estimations of propagation direction and
velocities. Afterwards, we examine how the precision and accuracy
of the determined elastic tensor parameters vary depending on the
SNR.

3.2 Results of propagation direction estimation

The propagation direction of an incoming event is determined by
comparing rotational motions that are induced by split shear waves.
Whether or not two separate shear wave arrivals are distinguishable
depends on source–receiver distance, difference in velocity, SNR,
wave frequency, sampling rate and material properties. Whenever
qS waves arrive inseparably at the receiver, the propagation direc-
tion cannot be uniquely determined with the method that follows.
Commonly, at least within most realistic applications on Earth, qP-
wave polarizations are expected to point roughly into the direction
of propagation. Therefore, we estimate the propagation direction
of events with non-split shear waves in the seismometer by sim-
ply adapting it as the polarization of qP waves. Note that in an
anisotropic medium, qP-polarization and propagation direction are
not necessarily parallel even if qS waves are not split.

To illustrate the performance of the method (Fig. 3), the error be-
haviour as a function of SNR of the rotational components for four
incident angles is analysed; Horizontal and 60◦ produce seismo-
grams with split shear waves, at 43◦ (Vicinity of singularity) shear
waves are only split for high-quality measurements, and vertical qS
waves are never separated.

The average errors monotonously decrease for increasing SNR,
displaying convergent behaviour. We find that for split qS waves, an
SNR of 10 conforms to average errors of around 1◦ and at an SNR
of 1 (=0 dB) the error is below 5◦. Expected errors are lower in
vertical direction since we simulate translational components to be
of better quality than rotational components. This angle basically
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Figure 2. Schematic overview of the hypothetical setting. The seven-component sensor with three translational, three rotational and one strain component is
located inside a borehole. The surrounding material is homogeneously anisotropic. Induced events radiate three types of waves (qP, qS1 and qS2) and they
arrive at the receiver in planar form. The propagation direction is uniform for body waves.

Figure 3. Error behaviour of propagation direction determination for se-
lected angles in a VTI medium (Taylor Sandstone). Errors for each sampled
SNR are derived from 30 different noise realizations of the same event. The
average angular deviation between the estimated and true propagation di-
rections are displayed. SNR of translations is 10 dB higher compared to the
portrayed SNR of rotations. At an inclination of approximately 43◦, Taylor
Sandstone exhibits an S-wave singularity. At vertical incidence, shear wave
splitting is absent and thus qP-polarization is always utilized for the esti-
mation. Horizontal events and those with an angle of incidence of 60◦ are
suitably separated from singularities to allow an application of the method
with rotational polarizations.

behaves isotropically which is why the qP-polarization serves as an
indication for the propagation direction.

The method commits a systematic error close to the singular-
ity. At this angle, the analytical solutions for qP-polarization and
propagation direction are nearly off by 5◦ which corresponds to the
error displayed by the graph. When the SNR exceeds 20 dB, the
split nature of the shear waves gets noted and a convergent trend
can be observed from there on. The issue with the utilization of
qP-polarization as an estimate for the propagation direction is that
the residual vectors are not randomly orientated in space. This in-
troduces non-normally distributed errors for velocity estimations
and for the elastic tensor inversion.

3.3 Results of velocity estimation

After rotating the six-component measurements into radial,
transversal and vertical directions—following the estimation of

propagation direction—ratios of translational and rotational sig-
nals allow an assertion of the phase velocity, as stated in eq. (17).
This is one of the key advantages of 6C observations. For a proper
evaluation of velocities, a short time window around the respective
qP-, qS1- and qS2-wave arrivals is considered. Estimates are there-
fore attained by means of an average of the ratio over multiple data
samples.

We display relative standard deviations of velocity estimations
vest around the true velocity vtrue based on N = 50 random noise
realizations of the same situation, that is,

σrelative =

√
1

N

∑N
i (vest,i − vtrue)2

vtrue
× 100 per cent . (18)

First, relative standard deviations are examined under varying
incidence angles. Fig. 4 contains two VTI materials in order to
visualize the material dependency of the method. Both shear wave
velocity estimations are equally well resolved and do not depend on
the incidence angle. At an SNR of 100, white gaussian noise causes
an expected deviation of less than 1 per cent for qS-wave velocities.

The reliance on material properties becomes apparent when in-
specting the errors for qP-wave velocities. Both portrayed VTI ma-
terials have preferable angles of incidence where better constrained
results are obtained and inclinations where a velocity estimation is
infeasible. For the chosen examples, and anticipated for most rocks
found on Earth, the standard deviations are significantly higher for
qP-wave velocities compared to qS-wave velocities. This behaviour
can be attributed to less pronounced rotations induced by qP waves.
In fact, the driving force behind the resolution of qP-wave velocities
is the angle spanned by propagation direction and qP-polarization,
which is supported by analytical results for the respective materials
under investigation.

To further illustrate the dependency on material properties, the
next experiment is conducted on altered elastic tensors of Taylor
Sandstone, giving the maximal P anisotropy as a variable. The
adapted synthetic materials are derived from changing all Thomsen
parameters simultaneously in a linear manner. This ensures that the
highest resolution remains at the same angle, which is at 58◦ and
therefore, Fig. 5 shows results for this specific angle only.
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Figure 4. Relative standard deviations of velocity estimations from 6C measurements and qP-wave velocity estimation from 7C measurements depending
on the incident angle in VTI media (Taylor Sandstone and Mesaverde calcareous Sandstone, both from Thomsen 1986) at SNR of 100. The 7C analysis is
explained in detail in Section 4. Relative standard deviations are normalized by the true velocity to ensure comparability between different materials (see eq.
18). Standard deviations are based on 50 repetitions for each sampled incident angle.

Figure 5. Relative standard deviation of rotation-derived P-wave velocities
with respect to SNR and P anisotropy (max θ vp(θ )/min θ vp(θ ) − 1) at an
angle of incidence of 58◦. The synthetic materials have been produced by
linearly changing the values of the Thomsen parameters of Taylor Sandstone
(Thomsen 1986). The default Taylor Sandstone has a P anisotropy of 10 per
cent. Standard deviations based on 50 repetitions for each material-SNR
pair.

Independent of SNR, the qP-wave velocity cannot be esti-
mated from 6C measurements if the medium under investigation
is isotropic, which was expected from theory. The higher the qual-
ity of the data, the less anisotropy is required to obtain a reasonable
estimate of the qP-wave velocity. Below an SNR of 10, the qP-wave
velocities cannot be resolved for media up to twice the P anisotropy
of Taylor Sandstone.

3.4 Results of elastic tensor estimation

After discussing the methods to extract propagation direction and
wave velocities at a six-component borehole receiver, we have all
the ingredients needed for an elastic tensor estimation.

To illustrate the validity of the method, noiseless measurements
are evaluated first on the basis of two exemplary media. For each
elastic tensor inversion, the synthetic six-component recordings of
25 randomly distributed events are analysed. Results are shown in
Fig. 6. Portrayed error bars visualize one standard deviation based

on 500 repetitions of the experiment. It is evident that each of the
21 elastic parameters is precisely recovered. Indeed, the inversion
scheme yields results up to machine precision. This is true for both
hexagonal and orthorhombic symmetries and, in general, entirely
independent of the investigated symmetry system.

In the following, it is investigated how sensitive the resolution
reacts to imperfections in the recordings. The results for an SNR of
100 are presented in Fig. 7 as histograms. The resolution of each
individual parameter depends on its position in the elastic tensor.
Standard deviations are lowest for elastic parameters C4:6,4:6 because
this section of the tensor is mostly sensitive to shear wave velocity
estimations. Anisotropic behaviour of qS waves can be confidently
resolved since C55 is distinctly different from C66. Therefore, the
medium can definitely be classified as non-isotropic. Elastic param-
eters C1:3,1:3 are significantly less well resolved. These parameters
are mostly sensitive to the qP-wave velocity estimate and it was
shown before that rotations are not necessarily suited for this task.
A P anisotropy cannot be observed since the Gaussian curves of his-
tograms of C11, C22 and C33 overlap significantly. Moreover, there
seems to be a tendency to underestimate these entries of the elastic
tensor. This results from difficulties in determining qP-wave veloc-
ities for some directions with hardly any rotations in qP. It could be
argued that no real information was gathered since educated guess-
ing of elastic parameters could have probably lead to similar results
than those obtained by C1:3,1:3.

The intermediate parameters of C1:3,4:6 exhibit standard varia-
tions greater than C4:6,4:6 and lower than C1:3,1:3. The estimates are
consistently close to zero, as they are expected to be. Nevertheless,
due to the usage of a tilted VTI medium, some should be distinctly
non-zero, however this cannot be resolved.

The resolution of the inversion of the elastic tensor based on a
joint translational and rotational measurement leaves a lot to be
desired as many crucial attributes of the elastic tensor cannot be re-
solved for an SNR of 100, which is already unrealistically high. The
main cause can be assigned to the poorly resolved qP-wave veloc-
ity estimation. And this is perfectly reasonable since qP waves are
predominantly divergent and therefore induce little to no rotations.
The elastic tensor estimation at a single station could be improved
if the instrument actually exploited the volume changing properties
of qP waves. This can be measured by a strainmeter, which directly
captures changes in length scales. In the following, we upgrade the
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Figure 6. Results of 500 repetitions of the elastic tensor inversion based on noise-free six-component recordings for 25 randomly located events in (a) VTI
symmetry (Taylor Sandstone) and (b) orthorhombic symmetry (Phenolic CE). True elastic parameter values are indicated by red crosses, blue dots illustrate
the mean of estimated parameters and error bars signal one standard deviation. In this perfect noise-free case, the true values are always resolved which shows
the validity of the elastic tensor inversion method.

six-component receiver to a seven-component receiver and carry
out the inversion scheme once again. Propagation direction and qS-
wave velocities are extracted the same way as before with rotational
components while qP-wave velocities can be retrieved alternatively.

4 7 C A NA LY S I S

In this section we investigate the potential of one additionally ob-
served strain component (longitudinal along the virtual borehole),
thus 7C, to improve the resolution of the inverted anisotropic elastic
constants.

4.1 qP-wave velocity estimation with strain

Observed strain rates induced by plane waves are inversely propor-
tional to the wave velocity (see eq. 4). Formulating an adequate
ratio with the acceleration component, an expression for the phase
velocity v can be obtained (formula comparable to e.g. Bernauer
et al. 2012).

v = ε̇33

ü3
ν3 = ε̇33

ü3
cos θ (19)

Here, ε̇33 is the strain rate gauged in the strainmeter oriented along
axis 3, ü3 is the observed acceleration and ν3 is the portion of
the estimated unit propagation direction vector in this direction.

Another way to assess the influence of the propagation direction
lies with the cosine of an angle θ that describes the opening an-
gle between strainmeter and propagation direction. For a verti-
cally oriented strainmeter, this angle coincides with the angle of
incidence.

4.2 qP-wave velocity estimation with strain—results

In theory, eq. (19) can be applied to obtain any body phase veloc-
ity. In the context of this study, it is only implemented to obtain a
superior qP-wave velocity estimate. Rotational components are still
utilized to acquire qS-wave velocity estimates. The superiority of
constraining qP-wave velocities with a strainmeter is illustrated in
Fig. 4. In contrast to the rotation-derived qP-wave velocities, the
strain-based method’s resolution is independent of material prop-
erties. Hence, anisotropic features are not mandatory for an assess-
ment of a medium’s qP-wave velocity. The expected errors depend
rather on the geometric outline of the problem (i.e. the opening
angle between strainmeter and propagation direction). For near ver-
tical arrivals, relative standard deviations of the qP-wave velocities
are of the same order of magnitude as for qS-wave velocities. With
an increasing opening angle between strainmeter and propagation
direction, the capability of the strainmeter to measure the P waves
signal decreases until the noise level prevents a reasonable estima-
tion for too shallow arrivals.
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Figure 7. Histograms for 500 repetitions of the elastic tensor inversion at an SNR of 100 in a 10◦-tilted Taylor Sandstone. The arrangement of histograms
mirrors the appearance of the Voigt-notation elastic tensor. True values are indicated by dotted vertical lines. Dashed vertical lines are the mean value of the
inversion and the Gaussian curves are maximum-likelihood solutions. The resolution of elastic parameters depends on the location inside the elastic tensor.

4.3 7C Inversion results

The effects of an improved qP-wave velocity estimation concept
through the addition of a strainmeter to the 3-D translational and
rotational measurements on the elastic tensor estimation can be seen
in Fig. 8. Every single one of the 21 elastic parameters is consid-
erably better constrained for the strain inversion scheme. Maybe
surprisingly, this is equally valid for parameters C4:6,4:6 even though
we established that those are mainly responsible for shear wave ve-
locities. However, qP-wave velocities are sensitive to the entire elas-
tic tensor and therefore, in return, the improved qP-wave velocity
estimates influence all parameters, even those we mostly associate
with shearing motion. Rotation-based results for this SNR are poor
for parameters C1:3,1:3, while the strain-method captures them with
considerably higher resolution. P-wave velocities can confidently
be resolved to depend on the direction since the standard deviations
of parameters C22 and C33 do not overlap. This is not true for the
rotation-derived elastic tensor where it is also not possible to dis-
tinguish between any of the parameters C1:3,4:6. For isotropic and
VTI media, those entries are expected to be zero. With the seven-
component setup and at this SNR, some parameters, especially C24

in this instance, are clearly non-zero. Therefore, when analysing
the results of the strain-derived elastic tensor, the material cannot
only be classified as strongly anisotropic for P and S waves, but the
popular symmetry system VTI can also be excluded. Assuming that
the underlying symmetry system is hexagonal (with an arbitrarily
oriented symmetry axis), this train of thought leads to an interesting
question: is it possible to derive the orientation of the symmetry
axis for the estimated elastic tensor?

4.4 Recovery of the symmetry axis

The elastic tensor inversion scheme presented in this study excludes
a priori assumption of symmetry. As a consequence, we invert for
all 21 elastic parameters simultaneously. This enables us to search
for a fitting symmetry system inside the estimated elastic tensor
after the inversion itself. The tensor can be tested to belong to
any symmetry system (and their rotated variations). If a specific
symmetry system was selected beforehand, any retrieved parame-
ters during the elastic tensor inversion are forced to replicate this
system. Therefore, the orientation information is lost and (most)
other symmetry systems are effectively excluded from the model
space.

Here, we would like to focus on the recovery of hexagonal sym-
metries. In contrast to VTI systems, their symmetry axis are not
necessarily vertical. Usually the main part of the elastic tensor is
given by the hexagonal component followed by other symmetries
(including orthorhombic, Browaeys & Chevrot 2004). The sym-
metry axis of a hexagonal elastic tensor can be determined with
a method presented in Abramian et al. (2020) that relies on the
characterization of specific covariants. Results are shown in Fig. 9.
The chosen medium has a symmetry plane that is tilted by 10◦.
For both inversion schemes, the estimated symmetry axis directions
scatter around the true direction. Errors are considerably smaller for
the strain scheme. Outliers can be explained in the following: the
method by Abramian et al. (2020) aims at determining the noise-
less elastic tensors symmetry axis. However, because of the elastic
tensor estimation based on noisy data, each entry is attached with
some degree of error.
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Figure 8. Seven-component inversion for the elastic tensor (dark tone). For this experiment, the setup that went into producing Fig. 7 was repeated with two
notable differences. First, P-wave velocities are estimated via a vertical strainmeter and second, the SNR of all components is 30 instead of 100. (a) Histograms
for all parameters. (b) True values, expected values and one standard deviation of the inversion schemes. For comparison, the results of the six-component
inversion scheme (light tone).

5 D I S C U S S I O N

The results in this study indicate that the inversion for the elastic ten-
sor at a single receiver located inside a borehole is—in principle—
possible. Theoretically, it is sufficient to deploy a six-component sta-
tion (three translational and three rotational components) however
the lack of a reliable qP-wave velocity estimation derived from ro-
tational motion may render this approach inapplicable. Even though
the six-component based elastic tensor inversion may be difficult
to implement in practice, it is interesting to note that sufficient in-
formation can be drawn from a point measurement to invert for the
elastic tensor with its 21 independent constituents from multidirec-
tional wavefields.

When equipping the station with an additional, single-component
strainmeter, effectively upgrading it to a seven-component receiver,

qP-wave velocities are better constrained and therefore all esti-
mated parameters benefit. In contrast to the rotational approach,
the medium is not required to behave anisotropically (curl of qP
wave) in order to estimate a qP-wave velocity. Prior to the ve-
locity estimations, the propagation direction must be determined.
Since the propagation direction is based on observing rotational
signals from split qS waves, it seems essential for the material to be
anisotropic for the inversion scheme to function, even though seven-
components are analysed. In Appendix B, an alternative approach
is presented that enables a derivation of propagation direction from
any isolated body wave arrival from seven-component data without
the pre-requisite that anisotropy exists in the material. This method
has not been applied in this study and therefore not included in the
main sections.
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Figure 9. Estimated symmetry axis directions from calculated elastic tensors for 10◦-tilted Taylor Sandstone at an SNR of 100 using (a) rotation method and
(b) strain method. True symmetry axis indicated by cross. Vertical direction in the centre and the circle indicates horizontal directions.

In practice, the elastic tensor inversion could prove useful since
the orientation of subsurface structures, like cracks and/or layers,
can be recovered. It is challenging to preserve borehole cores and
their exact orientation during the process of drilling, which is why
deploying a seven-component station may be more convenient. Var-
ious complications accompanied by applying the method to real data
are discussed in the following: first and foremost, the question of
instrumentation. Translational and strain recorders are commonly
placed in boreholes already. The state of the art of rotational re-
ceivers does not allow for an instrument that is simultaneously pre-
cise and compact, such that it could fit into a borehole. Hopefully,
technological advancements in the future lead to reliable seven-
component borehole sensors.

Second, the assumption of uniform propagation direction. To en-
able the reconstruction of the Kelvin–Christoffel matrix from the
measurements, the three body waves are required to enter from
the same direction. The determination of the propagation direction
from rotational measurements also assumes the direction to be con-
stant between split shear waves. This assumption breaks down in
strongly heterogeneous media. As was mentioned before, the seven-
component receiver provides a way to assign separate propagation
directions to each arrival. How this information can be translated
into an elastic tensor estimation, skipping the explicit calculation of
the Kelvin–Christoffel matrix, is a matter of future research. How a
heterogeneous subsurface, that is, a heterogeneous travel path from
source to receiver, influences the elastic tensor inversion results is
up to debate.

Further, to demonstrate the concept of elastic tensor inversions,
it was simplistically assumed that the source dynamic of events
are isotropic in S and P. Energy radiated from realistic sources
follow certain patterns (e.g. double couple) and therefore phase
amplitudes are different for every event and some phases may not
be captured by the station altogether. Future research involving 3-
D wave simulations will shed light on what specific effects more
complex sources have on elastic tensor inversions.

In theory, the elastic tensor is constrained with six observed
events. Of course, more events should be taken into consideration
to reduce the effect of noise. In this study, we utilized 25 events of
the same magnitude. How many earthquakes need to be observed
in a real world setup depends heavily on the specific situation. The
most realistic experimental setup to test the method with real obser-
vations incorporates active sources. Passively observed earthquake
hypocentres cannot be expected to follow a uniform probability

distribution in space around the receiver, leading to differences in
resolution for each individual elastic parameter.

6 C O N C LU S I O N

This study provides the fundamentals of an elastic tensor inver-
sion performed on data measured at a single borehole receiver. The
method requires to map wave velocities of at least six events into dif-
ferent directions. Even though theoretically possible with 3-D trans-
lational and rotational measurements, the six-component approach
fails due to inferior resolution of qP-wave velocity estimation. With
an additional strainmeter, the inversion scheme better constrains all
21 elastic parameters. Interpretations about subsurface structures
like cracks and layers and their orientations are feasible by identi-
fying a symmetry system inside the estimated elastic tensor. Before
applying the method to real data, more realistic scenarios need to
be investigated.
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A P P E N D I X A : M AT E R I A L S I N T H I S
S T U DY

Properties of the VTI materials Taylor Sandstone and Mesaverde
calcareous Sandstone are summarized in Table A1. The applied
orthorhombic material is the industrial laminate phenolic CE with
the following elastic tensor (Cheadle et al. 1991):

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

17.443 7.462 7.008 0 0 0
15.445 6.097 0 0 0

11.67 0 0 0
3.135 0 0

sym. 3.518 0
3.768

⎞
⎟⎟⎟⎟⎟⎟⎠

GPa (A1)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/229/2/1462/6501208 by guest on 25 February 2023

http://dx.doi.org/10.1029/JZ067i011p04427
http://dx.doi.org/10.1785/0220170143
http://dx.doi.org/10.1186/s40623-020-01333-9
http://dx.doi.org/10.1190/1.3211110
http://dx.doi.org/10.1007/s10950-012-9298-3
http://dx.doi.org/10.1111/j.1365-246x.2004.02415.x
http://dx.doi.org/10.1190/1.1442971
http://dx.doi.org/10.1111/j.1365-246x.1977.tb03698.x
http://dx.doi.org/10.1111/j.1365-246x.1984.tb05029.x
http://dx.doi.org/10.1190/1.1581073
http://dx.doi.org/10.1190/int-2016-0003.1
http://dx.doi.org/10.1785/0120080064
http://dx.doi.org/10.1007/s10950-012-9288-5
http://dx.doi.org/10.1190/1.2122407
http://dx.doi.org/10.1029/2004gl022336
http://dx.doi.org/10.1111/j.1365-246x.2006.03146.x
http://dx.doi.org/10.1007/s10950-020-09944-1
http://dx.doi.org/10.1146/annurev-earth-072420-065213
http://dx.doi.org/10.1029/gl013i013p01545
http://dx.doi.org/10.1029/2000gl011734
http://dx.doi.org/10.1190/1.3479489
http://dx.doi.org/10.1190/1.1444297
http://dx.doi.org/10.1093/gji/ggx542
http://dx.doi.org/10.3390/s20236904
http://dx.doi.org/10.1029/97RG01285
http://dx.doi.org/10.1093/gji/ggab044
http://dx.doi.org/10.1190/1.1442051
http://dx.doi.org/10.1007/bf00551484
http://dx.doi.org/10.1190/1.1512743
http://dx.doi.org/10.1785/0120150250
http://dx.doi.org/10.1029/gl013i013p01549
http://dx.doi.org/10.1785/0120190277


Anisotropic elastic parameter estimation 1473

Table A1. Properties of VTI materials applied in this study. Selected from
Thomsen (1986). α0 and β0 are vertical P- and S-wave velocities, respec-
tively. ρ is the density. ε, δ and γ are Thomsen parameters where ε drives the
ratio between horizontal and vertical P-wave velocities, γ the ratio between
horizontal and vertical S-wave velocities and δ influences P- and SV-wave
velocities at intermediate angles.

VTI medium Taylor Sandstone Mesaverde calcareous Sandstone

α0[m s−1] 3368 5460
β0[m s−1] 1829 3219
ε 0.11 0.00
δ −0.035 −0.264
γ 0.255 −0.007
ρ[kg m−3] 2500 2690

A P P E N D I X B : P RO PA G AT I O N
D I R E C T I O N D E T E R M I NAT I O N W I T H
S E V E N C O M P O N E N T S

Considering the plane-wave solutions for acceleration (eq. 2), ro-
tation rate (eq. 3) and strain rate (eq. 4), it is possible to find an
expression for the direction of propagation through the formulation

of ratios between rotations and strain.

�̇2

ε̇33
= 1

2

ν3n1 − ν1n3

ν3n3
= 1

2

(
n1

n3
− ν1

ν3

)

�̇1

ε̇33
= 1

2

ν2n3 − ν3n2

ν3n3
= 1

2

(
ν2

ν3
− n2

n3

)
(B1)

Eqs (B1) can be solved for ν1 and ν2, respectively. Assuming ν3

= 1 and subsequent normalization yields

ν = 1√(
− 2�̇2

ε̇33
+ n1

n3

)2
+

(
2�̇1
ε̇33

+ n2
n3

)2
+ 1

⎛
⎜⎝

− 2�̇2
ε̇33

+ n1
n3

2�̇1
ε̇33

+ n2
n3

1

⎞
⎟⎠ (B2)

This equation can be applied to isolated wave fronts and hence
allows to break the assumption of constant propagation direction
between the three arriving body waves. It is more flexible than the
6C method because it does not rely on anisotropic properties of the
medium. This formulation was not further analysed in the results
section since it did not considerably contribute to the main goal of
this study which was to show the feasibility of the elastic tensor
inversion with a single 6C/7C sensor. It will be subject to future
research.
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